Proof of Theorem gsth
Step | Hyp | Ref
| Expression |
1 | | gsth.2 |
. . . . . 6
b C c |
2 | | gsth.1 |
. . . . . . 7
a C b |
3 | 2 | comcom 453 |
. . . . . 6
b C a |
4 | 1, 3 | fh4rc 482 |
. . . . 5
((a ∩ b) ∪ c) =
((a ∪ c) ∩ (b
∪ c)) |
5 | 1 | comcom2 183 |
. . . . . 6
b C c⊥ |
6 | 5, 3 | fh4rc 482 |
. . . . 5
((a ∩ b) ∪ c⊥ ) = ((a ∪ c⊥ ) ∩ (b ∪ c⊥ )) |
7 | 4, 6 | 2an 79 |
. . . 4
(((a ∩ b) ∪ c)
∩ ((a ∩ b) ∪ c⊥ )) = (((a ∪ c) ∩
(b ∪ c)) ∩ ((a
∪ c⊥ ) ∩ (b ∪ c⊥ ))) |
8 | | an4 86 |
. . . 4
(((a ∪ c) ∩ (b
∪ c)) ∩ ((a ∪ c⊥ ) ∩ (b ∪ c⊥ ))) = (((a ∪ c) ∩
(a ∪ c⊥ )) ∩ ((b ∪ c) ∩
(b ∪ c⊥ ))) |
9 | | an32 83 |
. . . . 5
(((a ∪ c) ∩ (a
∪ c⊥ )) ∩ b) = (((a ∪
c) ∩ b) ∩ (a
∪ c⊥
)) |
10 | 1 | comd 456 |
. . . . . 6
b = ((b ∪ c) ∩
(b ∪ c⊥ )) |
11 | 10 | lan 77 |
. . . . 5
(((a ∪ c) ∩ (a
∪ c⊥ )) ∩ b) = (((a ∪
c) ∩ (a ∪ c⊥ )) ∩ ((b ∪ c) ∩
(b ∪ c⊥ ))) |
12 | 3, 1 | fh1r 473 |
. . . . . . 7
((a ∪ c) ∩ b) =
((a ∩ b) ∪ (c
∩ b)) |
13 | 12 | ran 78 |
. . . . . 6
(((a ∪ c) ∩ b)
∩ (a ∪ c⊥ )) = (((a ∩ b) ∪
(c ∩ b)) ∩ (a
∪ c⊥
)) |
14 | | lea 160 |
. . . . . . . . . 10
(a ∩ b) ≤ a |
15 | | leo 158 |
. . . . . . . . . 10
a ≤ (a ∪ c⊥ ) |
16 | 14, 15 | letr 137 |
. . . . . . . . 9
(a ∩ b) ≤ (a ∪
c⊥ ) |
17 | 16 | lecom 180 |
. . . . . . . 8
(a ∩ b) C (a
∪ c⊥
) |
18 | 17 | comcom 453 |
. . . . . . 7
(a ∪ c⊥ ) C (a ∩ b) |
19 | | gsth.3 |
. . . . . . . . . . 11
a C (b ∩ c) |
20 | 19 | comcom 453 |
. . . . . . . . . 10
(b ∩ c) C a |
21 | | coman2 186 |
. . . . . . . . . . 11
(b ∩ c) C c |
22 | 21 | comcom2 183 |
. . . . . . . . . 10
(b ∩ c) C c⊥ |
23 | 20, 22 | com2or 483 |
. . . . . . . . 9
(b ∩ c) C (a
∪ c⊥
) |
24 | 23 | comcom 453 |
. . . . . . . 8
(a ∪ c⊥ ) C (b ∩ c) |
25 | | ancom 74 |
. . . . . . . 8
(b ∩ c) = (c ∩
b) |
26 | 24, 25 | cbtr 182 |
. . . . . . 7
(a ∪ c⊥ ) C (c ∩ b) |
27 | 18, 26 | fh1r 473 |
. . . . . 6
(((a ∩ b) ∪ (c
∩ b)) ∩ (a ∪ c⊥ )) = (((a ∩ b) ∩
(a ∪ c⊥ )) ∪ ((c ∩ b) ∩
(a ∪ c⊥ ))) |
28 | 16 | df2le2 136 |
. . . . . . . 8
((a ∩ b) ∩ (a
∪ c⊥ )) = (a ∩ b) |
29 | | ancom 74 |
. . . . . . . . . 10
(c ∩ b) = (b ∩
c) |
30 | 29 | ran 78 |
. . . . . . . . 9
((c ∩ b) ∩ (a
∪ c⊥ )) = ((b ∩ c) ∩
(a ∪ c⊥ )) |
31 | 20, 22 | fh1 469 |
. . . . . . . . 9
((b ∩ c) ∩ (a
∪ c⊥ )) = (((b ∩ c) ∩
a) ∪ ((b ∩ c) ∩
c⊥ )) |
32 | | anass 76 |
. . . . . . . . . . . 12
((b ∩ c) ∩ c⊥ ) = (b ∩ (c ∩
c⊥ )) |
33 | | dff 101 |
. . . . . . . . . . . . . 14
0 = (c ∩ c⊥ ) |
34 | 33 | ax-r1 35 |
. . . . . . . . . . . . 13
(c ∩ c⊥ ) = 0 |
35 | 34 | lan 77 |
. . . . . . . . . . . 12
(b ∩ (c ∩ c⊥ )) = (b ∩ 0) |
36 | | an0 108 |
. . . . . . . . . . . 12
(b ∩ 0) = 0 |
37 | 32, 35, 36 | 3tr 65 |
. . . . . . . . . . 11
((b ∩ c) ∩ c⊥ ) = 0 |
38 | 37 | lor 70 |
. . . . . . . . . 10
(((b ∩ c) ∩ a)
∪ ((b ∩ c) ∩ c⊥ )) = (((b ∩ c) ∩
a) ∪ 0) |
39 | | or0 102 |
. . . . . . . . . 10
(((b ∩ c) ∩ a)
∪ 0) = ((b ∩ c) ∩ a) |
40 | 38, 39 | ax-r2 36 |
. . . . . . . . 9
(((b ∩ c) ∩ a)
∪ ((b ∩ c) ∩ c⊥ )) = ((b ∩ c) ∩
a) |
41 | 30, 31, 40 | 3tr 65 |
. . . . . . . 8
((c ∩ b) ∩ (a
∪ c⊥ )) = ((b ∩ c) ∩
a) |
42 | 28, 41 | 2or 72 |
. . . . . . 7
(((a ∩ b) ∩ (a
∪ c⊥ )) ∪
((c ∩ b) ∩ (a
∪ c⊥ ))) = ((a ∩ b) ∪
((b ∩ c) ∩ a)) |
43 | | ax-a2 31 |
. . . . . . 7
((a ∩ b) ∪ ((b
∩ c) ∩ a)) = (((b ∩
c) ∩ a) ∪ (a
∩ b)) |
44 | | ancom 74 |
. . . . . . . . 9
((b ∩ c) ∩ a) =
(a ∩ (b ∩ c)) |
45 | | lea 160 |
. . . . . . . . . 10
(b ∩ c) ≤ b |
46 | 45 | lelan 167 |
. . . . . . . . 9
(a ∩ (b ∩ c)) ≤
(a ∩ b) |
47 | 44, 46 | bltr 138 |
. . . . . . . 8
((b ∩ c) ∩ a) ≤
(a ∩ b) |
48 | 47 | df-le2 131 |
. . . . . . 7
(((b ∩ c) ∩ a)
∪ (a ∩ b)) = (a ∩
b) |
49 | 42, 43, 48 | 3tr 65 |
. . . . . 6
(((a ∩ b) ∩ (a
∪ c⊥ )) ∪
((c ∩ b) ∩ (a
∪ c⊥ ))) = (a ∩ b) |
50 | 13, 27, 49 | 3tr 65 |
. . . . 5
(((a ∪ c) ∩ b)
∩ (a ∪ c⊥ )) = (a ∩ b) |
51 | 9, 11, 50 | 3tr2 64 |
. . . 4
(((a ∪ c) ∩ (a
∪ c⊥ )) ∩
((b ∪ c) ∩ (b
∪ c⊥ ))) = (a ∩ b) |
52 | 7, 8, 51 | 3tr 65 |
. . 3
(((a ∩ b) ∪ c)
∩ ((a ∩ b) ∪ c⊥ )) = (a ∩ b) |
53 | 52 | ax-r1 35 |
. 2
(a ∩ b) = (((a ∩
b) ∪ c) ∩ ((a
∩ b) ∪ c⊥ )) |
54 | 53 | df2c1 468 |
1
(a ∩ b) C c |