QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  gsth GIF version

Theorem gsth 489
Description: Gudder-Schelp's Theorem. Beran, p. 262, Thm. 4.1. (Contributed by NM, 20-Sep-1998.)
Hypotheses
Ref Expression
gsth.1 a C b
gsth.2 b C c
gsth.3 a C (bc)
Assertion
Ref Expression
gsth (ab) C c

Proof of Theorem gsth
StepHypRef Expression
1 gsth.2 . . . . . 6 b C c
2 gsth.1 . . . . . . 7 a C b
32comcom 453 . . . . . 6 b C a
41, 3fh4rc 482 . . . . 5 ((ab) ∪ c) = ((ac) ∩ (bc))
51comcom2 183 . . . . . 6 b C c
65, 3fh4rc 482 . . . . 5 ((ab) ∪ c ) = ((ac ) ∩ (bc ))
74, 62an 79 . . . 4 (((ab) ∪ c) ∩ ((ab) ∪ c )) = (((ac) ∩ (bc)) ∩ ((ac ) ∩ (bc )))
8 an4 86 . . . 4 (((ac) ∩ (bc)) ∩ ((ac ) ∩ (bc ))) = (((ac) ∩ (ac )) ∩ ((bc) ∩ (bc )))
9 an32 83 . . . . 5 (((ac) ∩ (ac )) ∩ b) = (((ac) ∩ b) ∩ (ac ))
101comd 456 . . . . . 6 b = ((bc) ∩ (bc ))
1110lan 77 . . . . 5 (((ac) ∩ (ac )) ∩ b) = (((ac) ∩ (ac )) ∩ ((bc) ∩ (bc )))
123, 1fh1r 473 . . . . . . 7 ((ac) ∩ b) = ((ab) ∪ (cb))
1312ran 78 . . . . . 6 (((ac) ∩ b) ∩ (ac )) = (((ab) ∪ (cb)) ∩ (ac ))
14 lea 160 . . . . . . . . . 10 (ab) ≤ a
15 leo 158 . . . . . . . . . 10 a ≤ (ac )
1614, 15letr 137 . . . . . . . . 9 (ab) ≤ (ac )
1716lecom 180 . . . . . . . 8 (ab) C (ac )
1817comcom 453 . . . . . . 7 (ac ) C (ab)
19 gsth.3 . . . . . . . . . . 11 a C (bc)
2019comcom 453 . . . . . . . . . 10 (bc) C a
21 coman2 186 . . . . . . . . . . 11 (bc) C c
2221comcom2 183 . . . . . . . . . 10 (bc) C c
2320, 22com2or 483 . . . . . . . . 9 (bc) C (ac )
2423comcom 453 . . . . . . . 8 (ac ) C (bc)
25 ancom 74 . . . . . . . 8 (bc) = (cb)
2624, 25cbtr 182 . . . . . . 7 (ac ) C (cb)
2718, 26fh1r 473 . . . . . 6 (((ab) ∪ (cb)) ∩ (ac )) = (((ab) ∩ (ac )) ∪ ((cb) ∩ (ac )))
2816df2le2 136 . . . . . . . 8 ((ab) ∩ (ac )) = (ab)
29 ancom 74 . . . . . . . . . 10 (cb) = (bc)
3029ran 78 . . . . . . . . 9 ((cb) ∩ (ac )) = ((bc) ∩ (ac ))
3120, 22fh1 469 . . . . . . . . 9 ((bc) ∩ (ac )) = (((bc) ∩ a) ∪ ((bc) ∩ c ))
32 anass 76 . . . . . . . . . . . 12 ((bc) ∩ c ) = (b ∩ (cc ))
33 dff 101 . . . . . . . . . . . . . 14 0 = (cc )
3433ax-r1 35 . . . . . . . . . . . . 13 (cc ) = 0
3534lan 77 . . . . . . . . . . . 12 (b ∩ (cc )) = (b ∩ 0)
36 an0 108 . . . . . . . . . . . 12 (b ∩ 0) = 0
3732, 35, 363tr 65 . . . . . . . . . . 11 ((bc) ∩ c ) = 0
3837lor 70 . . . . . . . . . 10 (((bc) ∩ a) ∪ ((bc) ∩ c )) = (((bc) ∩ a) ∪ 0)
39 or0 102 . . . . . . . . . 10 (((bc) ∩ a) ∪ 0) = ((bc) ∩ a)
4038, 39ax-r2 36 . . . . . . . . 9 (((bc) ∩ a) ∪ ((bc) ∩ c )) = ((bc) ∩ a)
4130, 31, 403tr 65 . . . . . . . 8 ((cb) ∩ (ac )) = ((bc) ∩ a)
4228, 412or 72 . . . . . . 7 (((ab) ∩ (ac )) ∪ ((cb) ∩ (ac ))) = ((ab) ∪ ((bc) ∩ a))
43 ax-a2 31 . . . . . . 7 ((ab) ∪ ((bc) ∩ a)) = (((bc) ∩ a) ∪ (ab))
44 ancom 74 . . . . . . . . 9 ((bc) ∩ a) = (a ∩ (bc))
45 lea 160 . . . . . . . . . 10 (bc) ≤ b
4645lelan 167 . . . . . . . . 9 (a ∩ (bc)) ≤ (ab)
4744, 46bltr 138 . . . . . . . 8 ((bc) ∩ a) ≤ (ab)
4847df-le2 131 . . . . . . 7 (((bc) ∩ a) ∪ (ab)) = (ab)
4942, 43, 483tr 65 . . . . . 6 (((ab) ∩ (ac )) ∪ ((cb) ∩ (ac ))) = (ab)
5013, 27, 493tr 65 . . . . 5 (((ac) ∩ b) ∩ (ac )) = (ab)
519, 11, 503tr2 64 . . . 4 (((ac) ∩ (ac )) ∩ ((bc) ∩ (bc ))) = (ab)
527, 8, 513tr 65 . . 3 (((ab) ∪ c) ∩ ((ab) ∪ c )) = (ab)
5352ax-r1 35 . 2 (ab) = (((ab) ∪ c) ∩ ((ab) ∪ c ))
5453df2c1 468 1 (ab) C c
Colors of variables: term
Syntax hints:   C wc 3   wn 4  wo 6  wa 7  0wf 9
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by:  gsth2  490
  Copyright terms: Public domain W3C validator