Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > comcom4 | GIF version |
Description: Commutation equivalence. Kalmbach 83 p. 23. (Contributed by NM, 27-Aug-1997.) |
Ref | Expression |
---|---|
comcom.1 | a C b |
Ref | Expression |
---|---|
comcom4 | a⊥ C b⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comcom.1 | . . 3 a C b | |
2 | 1 | comcom3 454 | . 2 a⊥ C b |
3 | 2 | comcom2 183 | 1 a⊥ C b⊥ |
Colors of variables: term |
Syntax hints: C wc 3 ⊥ wn 4 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: comd 456 comcom5 458 fh3 471 fh4 472 com2an 484 gstho 491 i3abs3 524 u2lemc4 702 u3lemc4 703 u4lemc4 704 u5lemc4 705 u2lem3 750 u4lem4 759 u5lem5 765 u5lem6 769 3vded3 819 marsdenlem1 880 marsdenlem2 881 |
Copyright terms: Public domain | W3C validator |