Proof of Theorem nom22
Step | Hyp | Ref
| Expression |
1 | | oran3 93 |
. . . . . . 7
(a⊥ ∪ b⊥ ) = (a ∩ b)⊥ |
2 | 1 | lor 70 |
. . . . . 6
(a ∪ (a⊥ ∪ b⊥ )) = (a ∪ (a ∩
b)⊥ ) |
3 | 2 | ax-r1 35 |
. . . . 5
(a ∪ (a ∩ b)⊥ ) = (a ∪ (a⊥ ∪ b⊥ )) |
4 | | or12 80 |
. . . . 5
(a ∪ (a⊥ ∪ b⊥ )) = (a⊥ ∪ (a ∪ b⊥ )) |
5 | 3, 4 | ax-r2 36 |
. . . 4
(a ∪ (a ∩ b)⊥ ) = (a⊥ ∪ (a ∪ b⊥ )) |
6 | | ax-a2 31 |
. . . . 5
((a ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ )) = ((a⊥ ∩ (a ∩ b)⊥ ) ∪ (a ∩ b)) |
7 | 1 | lan 77 |
. . . . . . . 8
(a⊥ ∩ (a⊥ ∪ b⊥ )) = (a⊥ ∩ (a ∩ b)⊥ ) |
8 | 7 | ax-r1 35 |
. . . . . . 7
(a⊥ ∩ (a ∩ b)⊥ ) = (a⊥ ∩ (a⊥ ∪ b⊥ )) |
9 | | anabs 121 |
. . . . . . 7
(a⊥ ∩ (a⊥ ∪ b⊥ )) = a⊥ |
10 | 8, 9 | ax-r2 36 |
. . . . . 6
(a⊥ ∩ (a ∩ b)⊥ ) = a⊥ |
11 | 10 | ax-r5 38 |
. . . . 5
((a⊥ ∩
(a ∩ b)⊥ ) ∪ (a ∩ b)) =
(a⊥ ∪ (a ∩ b)) |
12 | 6, 11 | ax-r2 36 |
. . . 4
((a ∩ b) ∪ (a⊥ ∩ (a ∩ b)⊥ )) = (a⊥ ∪ (a ∩ b)) |
13 | 5, 12 | 2an 79 |
. . 3
((a ∪ (a ∩ b)⊥ ) ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) = ((a⊥ ∪ (a ∪ b⊥ )) ∩ (a⊥ ∪ (a ∩ b))) |
14 | | ancom 74 |
. . 3
((a⊥ ∪
(a ∪ b⊥ )) ∩ (a⊥ ∪ (a ∩ b))) =
((a⊥ ∪ (a ∩ b))
∩ (a⊥ ∪ (a ∪ b⊥ ))) |
15 | | lea 160 |
. . . . . 6
(a ∩ b) ≤ a |
16 | | leo 158 |
. . . . . 6
a ≤ (a ∪ b⊥ ) |
17 | 15, 16 | letr 137 |
. . . . 5
(a ∩ b) ≤ (a ∪
b⊥ ) |
18 | 17 | lelor 166 |
. . . 4
(a⊥ ∪ (a ∩ b)) ≤
(a⊥ ∪ (a ∪ b⊥ )) |
19 | 18 | df2le2 136 |
. . 3
((a⊥ ∪
(a ∩ b)) ∩ (a⊥ ∪ (a ∪ b⊥ ))) = (a⊥ ∪ (a ∩ b)) |
20 | 13, 14, 19 | 3tr 65 |
. 2
((a ∪ (a ∩ b)⊥ ) ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) = (a⊥ ∪ (a ∩ b)) |
21 | | df-id2 51 |
. 2
(a ≡2 (a ∩ b)) =
((a ∪ (a ∩ b)⊥ ) ∩ ((a ∩ b) ∪
(a⊥ ∩ (a ∩ b)⊥ ))) |
22 | | df-i1 44 |
. 2
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
23 | 20, 21, 22 | 3tr1 63 |
1
(a ≡2 (a ∩ b)) =
(a →1 b) |