Proof of Theorem wdid0id2
Step | Hyp | Ref
| Expression |
1 | | df-id2 51 |
. 2
(a ≡2 b) = ((a ∪
b⊥ ) ∩ (b ∪ (a⊥ ∩ b⊥ ))) |
2 | | df-id0 49 |
. . . . 5
(a ≡0 b) = ((a⊥ ∪ b) ∩ (b⊥ ∪ a)) |
3 | 2 | ax-r1 35 |
. . . 4
((a⊥ ∪ b) ∩ (b⊥ ∪ a)) = (a
≡0 b) |
4 | | wdid0id5.1 |
. . . 4
(a ≡0 b) = 1 |
5 | 3, 4 | ax-r2 36 |
. . 3
((a⊥ ∪ b) ∩ (b⊥ ∪ a)) = 1 |
6 | | wancom 203 |
. . . 4
(((a⊥ ∪
b) ∩ (b⊥ ∪ a)) ≡ ((b⊥ ∪ a) ∩ (a⊥ ∪ b))) = 1 |
7 | | wa2 192 |
. . . . 5
((b⊥ ∪ a) ≡ (a
∪ b⊥ )) =
1 |
8 | | wa4 194 |
. . . . . . . 8
(((b ∪ a⊥ ) ∪ (b ∪ b⊥ )) ≡ (b ∪ b⊥ )) = 1 |
9 | 8 | wleoa 376 |
. . . . . . 7
(((b ∪ a⊥ ) ∩ (b ∪ b⊥ )) ≡ (b ∪ a⊥ )) = 1 |
10 | 9 | wr1 197 |
. . . . . 6
((b ∪ a⊥ ) ≡ ((b ∪ a⊥ ) ∩ (b ∪ b⊥ ))) = 1 |
11 | | wa2 192 |
. . . . . 6
((a⊥ ∪ b) ≡ (b
∪ a⊥ )) =
1 |
12 | | wddi3 1109 |
. . . . . 6
((b ∪ (a⊥ ∩ b⊥ )) ≡ ((b ∪ a⊥ ) ∩ (b ∪ b⊥ ))) = 1 |
13 | 10, 11, 12 | w3tr1 374 |
. . . . 5
((a⊥ ∪ b) ≡ (b
∪ (a⊥ ∩ b⊥ ))) = 1 |
14 | 7, 13 | w2an 373 |
. . . 4
(((b⊥ ∪
a) ∩ (a⊥ ∪ b)) ≡ ((a
∪ b⊥ ) ∩ (b ∪ (a⊥ ∩ b⊥ )))) = 1 |
15 | 6, 14 | wr2 371 |
. . 3
(((a⊥ ∪
b) ∩ (b⊥ ∪ a)) ≡ ((a
∪ b⊥ ) ∩ (b ∪ (a⊥ ∩ b⊥ )))) = 1 |
16 | 5, 15 | wwbmp 205 |
. 2
((a ∪ b⊥ ) ∩ (b ∪ (a⊥ ∩ b⊥ ))) = 1 |
17 | 1, 16 | ax-r2 36 |
1
(a ≡2 b) = 1 |