Proof of Theorem dp35lemd
Step | Hyp | Ref
| Expression |
1 | | lea 160 |
. . 3
(b0 ∩ (a0 ∪ p0)) ≤ b0 |
2 | | dp35lem.1 |
. . . 4
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
3 | | dp35lem.2 |
. . . 4
c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
4 | | dp35lem.3 |
. . . 4
c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
5 | | dp35lem.4 |
. . . 4
p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) |
6 | | dp35lem.5 |
. . . 4
p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) |
7 | 2, 3, 4, 5, 6 | dp35leme 1173 |
. . 3
(b0 ∩ (a0 ∪ p0)) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
8 | 1, 7 | ler2an 173 |
. 2
(b0 ∩ (a0 ∪ p0)) ≤ (b0 ∩ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))))) |
9 | | lea 160 |
. . . 4
(b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) ≤ b0 |
10 | 9 | mldual2i 1127 |
. . 3
(b0 ∩ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))))) = ((b0 ∩ a0) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
11 | | lea 160 |
. . . . 5
(b0 ∩ a0) ≤ b0 |
12 | 11, 9 | lel2or 170 |
. . . 4
((b0 ∩ a0) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) ≤ b0 |
13 | | ancom 74 |
. . . . . . 7
(b0 ∩ a0) = (a0 ∩ b0) |
14 | 13 | bile 142 |
. . . . . 6
(b0 ∩ a0) ≤ (a0 ∩ b0) |
15 | | lear 161 |
. . . . . 6
(b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) ≤ (b1 ∪ (c2 ∩ (c0 ∪ c1))) |
16 | 14, 15 | le2or 168 |
. . . . 5
((b0 ∩ a0) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) ≤ ((a0 ∩ b0) ∪ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) |
17 | | orass 75 |
. . . . . 6
(((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) = ((a0 ∩ b0) ∪ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) |
18 | 17 | cm 61 |
. . . . 5
((a0 ∩ b0) ∪ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) = (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) |
19 | 16, 18 | lbtr 139 |
. . . 4
((b0 ∩ a0) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) ≤ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) |
20 | 12, 19 | ler2an 173 |
. . 3
((b0 ∩ a0) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) ≤ (b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) |
21 | 10, 20 | bltr 138 |
. 2
(b0 ∩ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))))) ≤ (b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) |
22 | 8, 21 | letr 137 |
1
(b0 ∩ (a0 ∪ p0)) ≤ (b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) |