Proof of Theorem dp35leme
Step | Hyp | Ref
| Expression |
1 | | leor 159 |
. . 3
b0 ≤ (a0 ∪ b0) |
2 | | dp35lem.4 |
. . . . 5
p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) |
3 | 2 | lor 70 |
. . . 4
(a0 ∪ p0) = (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
4 | 3 | bile 142 |
. . 3
(a0 ∪ p0) ≤ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
5 | 1, 4 | le2an 169 |
. 2
(b0 ∩ (a0 ∪ p0)) ≤ ((a0 ∪ b0) ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) |
6 | | ancom 74 |
. . . . . 6
(((a1 ∪ b1) ∩ (a2 ∪ b2)) ∩ (a0 ∪ b0)) = ((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
7 | | anass 76 |
. . . . . . 7
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) = ((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a2 ∪ b2))) |
8 | 7 | cm 61 |
. . . . . 6
((a0 ∪ b0) ∩ ((a1 ∪ b1) ∩ (a2 ∪ b2))) = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) |
9 | 6, 8 | tr 62 |
. . . . 5
(((a1 ∪ b1) ∩ (a2 ∪ b2)) ∩ (a0 ∪ b0)) = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) |
10 | 9 | lor 70 |
. . . 4
(a0 ∪ (((a1 ∪ b1) ∩ (a2 ∪ b2)) ∩ (a0 ∪ b0))) = (a0 ∪ (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2))) |
11 | | ancom 74 |
. . . . 5
((a0 ∪ b0) ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) = ((a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) ∩ (a0 ∪ b0)) |
12 | | leo 158 |
. . . . . 6
a0 ≤ (a0 ∪ b0) |
13 | 12 | mlduali 1128 |
. . . . 5
((a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2))) ∩ (a0 ∪ b0)) = (a0 ∪ (((a1 ∪ b1) ∩ (a2 ∪ b2)) ∩ (a0 ∪ b0))) |
14 | 11, 13 | tr 62 |
. . . 4
((a0 ∪ b0) ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) = (a0 ∪ (((a1 ∪ b1) ∩ (a2 ∪ b2)) ∩ (a0 ∪ b0))) |
15 | | dp35lem.5 |
. . . . 5
p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) |
16 | 15 | lor 70 |
. . . 4
(a0 ∪ p) = (a0 ∪ (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2))) |
17 | 10, 14, 16 | 3tr1 63 |
. . 3
((a0 ∪ b0) ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) = (a0 ∪ p) |
18 | | dp35lem.1 |
. . . 4
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
19 | | dp35lem.2 |
. . . 4
c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
20 | | dp35lem.3 |
. . . 4
c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
21 | 18, 19, 20, 2, 15 | dp35lemf 1172 |
. . 3
(a0 ∪ p) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
22 | 17, 21 | bltr 138 |
. 2
((a0 ∪ b0) ∩ (a0 ∪ ((a1 ∪ b1) ∩ (a2 ∪ b2)))) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
23 | 5, 22 | letr 137 |
1
(b0 ∩ (a0 ∪ p0)) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |