QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  mlduali GIF version

Theorem mlduali 1128
Description: Inference version of dual of modular law. (Contributed by NM, 1-Apr-2012.)
Hypothesis
Ref Expression
mlduali.1 ac
Assertion
Ref Expression
mlduali ((ab) ∩ c) = (a ∪ (bc))

Proof of Theorem mlduali
StepHypRef Expression
1 ax-a2 31 . . . 4 (ab) = (ba)
21ran 78 . . 3 ((ab) ∩ c) = ((ba) ∩ c)
3 ancom 74 . . 3 ((ba) ∩ c) = (c ∩ (ba))
4 mlduali.1 . . . 4 ac
54mldual2i 1127 . . 3 (c ∩ (ba)) = ((cb) ∪ a)
62, 3, 53tr 65 . 2 ((ab) ∩ c) = ((cb) ∪ a)
7 ancom 74 . . 3 (cb) = (bc)
87ror 71 . 2 ((cb) ∪ a) = ((bc) ∪ a)
9 orcom 73 . 2 ((bc) ∪ a) = (a ∪ (bc))
106, 8, 93tr 65 1 ((ab) ∩ c) = (a ∪ (bc))
Colors of variables: term
Syntax hints:   = wb 1  wle 2  wo 6  wa 7
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-ml 1122
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131
This theorem is referenced by:  ml3le  1129  modexp  1152  dp15lema  1154  dp35leme  1173  xdp15  1199  xxdp15  1202  xdp45lem  1204  xdp43lem  1205  xdp45  1206  xdp43  1207  3dp43  1208  testmod2  1215  testmod2expanded  1216
  Copyright terms: Public domain W3C validator