Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > mlduali | GIF version |
Description: Inference version of dual of modular law. (Contributed by NM, 1-Apr-2012.) |
Ref | Expression |
---|---|
mlduali.1 | a ≤ c |
Ref | Expression |
---|---|
mlduali | ((a ∪ b) ∩ c) = (a ∪ (b ∩ c)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a2 31 | . . . 4 (a ∪ b) = (b ∪ a) | |
2 | 1 | ran 78 | . . 3 ((a ∪ b) ∩ c) = ((b ∪ a) ∩ c) |
3 | ancom 74 | . . 3 ((b ∪ a) ∩ c) = (c ∩ (b ∪ a)) | |
4 | mlduali.1 | . . . 4 a ≤ c | |
5 | 4 | mldual2i 1127 | . . 3 (c ∩ (b ∪ a)) = ((c ∩ b) ∪ a) |
6 | 2, 3, 5 | 3tr 65 | . 2 ((a ∪ b) ∩ c) = ((c ∩ b) ∪ a) |
7 | ancom 74 | . . 3 (c ∩ b) = (b ∩ c) | |
8 | 7 | ror 71 | . 2 ((c ∩ b) ∪ a) = ((b ∩ c) ∪ a) |
9 | orcom 73 | . 2 ((b ∩ c) ∪ a) = (a ∪ (b ∩ c)) | |
10 | 6, 8, 9 | 3tr 65 | 1 ((a ∪ b) ∩ c) = (a ∪ (b ∩ c)) |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1122 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: ml3le 1129 modexp 1152 dp15lema 1154 dp35leme 1173 xdp15 1199 xxdp15 1202 xdp45lem 1204 xdp43lem 1205 xdp45 1206 xdp43 1207 3dp43 1208 testmod2 1215 testmod2expanded 1216 |
Copyright terms: Public domain | W3C validator |