Proof of Theorem dp41lemc0
Step | Hyp | Ref
| Expression |
1 | | ax-a2 31 |
. . . . . . 7
(a0 ∪ a1) = (a1 ∪ a0) |
2 | 1 | ror 71 |
. . . . . 6
((a0 ∪ a1) ∪ b1) = ((a1 ∪ a0) ∪ b1) |
3 | | or32 82 |
. . . . . 6
((a1 ∪ a0) ∪ b1) = ((a1 ∪ b1) ∪ a0) |
4 | 2, 3 | tr 62 |
. . . . 5
((a0 ∪ a1) ∪ b1) = ((a1 ∪ b1) ∪ a0) |
5 | 4 | lan 77 |
. . . 4
(((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) = (((a0 ∪ b0) ∪ b1) ∩ ((a1 ∪ b1) ∪ a0)) |
6 | | ancom 74 |
. . . 4
(((a0 ∪ b0) ∪ b1) ∩ ((a1 ∪ b1) ∪ a0)) = (((a1 ∪ b1) ∪ a0) ∩ ((a0 ∪ b0) ∪ b1)) |
7 | 5, 6 | tr 62 |
. . 3
(((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) = (((a1 ∪ b1) ∪ a0) ∩ ((a0 ∪ b0) ∪ b1)) |
8 | | leor 159 |
. . . . 5
b1 ≤ (a1 ∪ b1) |
9 | 8 | ler 149 |
. . . 4
b1 ≤ ((a1 ∪ b1) ∪ a0) |
10 | 9 | mldual2i 1127 |
. . 3
(((a1 ∪ b1) ∪ a0) ∩ ((a0 ∪ b0) ∪ b1)) = ((((a1 ∪ b1) ∪ a0) ∩ (a0 ∪ b0)) ∪ b1) |
11 | | ancom 74 |
. . . . 5
(((a1 ∪ b1) ∪ a0) ∩ (a0 ∪ b0)) = ((a0 ∪ b0) ∩ ((a1 ∪ b1) ∪ a0)) |
12 | | leo 158 |
. . . . . 6
a0 ≤ (a0 ∪ b0) |
13 | 12 | mldual2i 1127 |
. . . . 5
((a0 ∪ b0) ∩ ((a1 ∪ b1) ∪ a0)) = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∪ a0) |
14 | 11, 13 | tr 62 |
. . . 4
(((a1 ∪ b1) ∪ a0) ∩ (a0 ∪ b0)) = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∪ a0) |
15 | 14 | ror 71 |
. . 3
((((a1 ∪ b1) ∪ a0) ∩ (a0 ∪ b0)) ∪ b1) = ((((a0 ∪ b0) ∩ (a1 ∪ b1)) ∪ a0) ∪ b1) |
16 | 7, 10, 15 | 3tr 65 |
. 2
(((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) = ((((a0 ∪ b0) ∩ (a1 ∪ b1)) ∪ a0) ∪ b1) |
17 | | orass 75 |
. 2
((((a0 ∪ b0) ∩ (a1 ∪ b1)) ∪ a0) ∪ b1) = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∪ (a0 ∪ b1)) |
18 | | orcom 73 |
. 2
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∪ (a0 ∪ b1)) = ((a0 ∪ b1) ∪ ((a0 ∪ b0) ∩ (a1 ∪ b1))) |
19 | 16, 17, 18 | 3tr 65 |
1
(((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) = ((a0 ∪ b1) ∪ ((a0 ∪ b0) ∩ (a1 ∪ b1))) |