Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > dp41lemd | GIF version |
Description: Part of proof (4)=>(1) in Day/Pickering 1982. (Contributed by NM, 3-Apr-2012.) |
Ref | Expression |
---|---|
dp41lem.1 | c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
dp41lem.2 | c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
dp41lem.3 | c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
dp41lem.4 | p = (((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) |
dp41lem.5 | p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1)) |
dp41lem.6 | p2 ≤ (a2 ∪ b2) |
Ref | Expression |
---|---|
dp41lemd | (c2 ∩ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = (c2 ∩ ((c0 ∪ c1) ∪ (c2 ∩ (a0 ∪ b1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mldual 1124 | . 2 (c2 ∩ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = ((c2 ∩ (a0 ∪ b1)) ∪ (c2 ∩ (c0 ∪ c1))) | |
2 | ancom 74 | . . 3 (c2 ∩ (c0 ∪ c1)) = ((c0 ∪ c1) ∩ c2) | |
3 | 2 | lor 70 | . 2 ((c2 ∩ (a0 ∪ b1)) ∪ (c2 ∩ (c0 ∪ c1))) = ((c2 ∩ (a0 ∪ b1)) ∪ ((c0 ∪ c1) ∩ c2)) |
4 | lea 160 | . . . 4 (c2 ∩ (a0 ∪ b1)) ≤ c2 | |
5 | 4 | ml2i 1125 | . . 3 ((c2 ∩ (a0 ∪ b1)) ∪ ((c0 ∪ c1) ∩ c2)) = (((c2 ∩ (a0 ∪ b1)) ∪ (c0 ∪ c1)) ∩ c2) |
6 | ancom 74 | . . 3 (((c2 ∩ (a0 ∪ b1)) ∪ (c0 ∪ c1)) ∩ c2) = (c2 ∩ ((c2 ∩ (a0 ∪ b1)) ∪ (c0 ∪ c1))) | |
7 | ax-a2 31 | . . . 4 ((c2 ∩ (a0 ∪ b1)) ∪ (c0 ∪ c1)) = ((c0 ∪ c1) ∪ (c2 ∩ (a0 ∪ b1))) | |
8 | 7 | lan 77 | . . 3 (c2 ∩ ((c2 ∩ (a0 ∪ b1)) ∪ (c0 ∪ c1))) = (c2 ∩ ((c0 ∪ c1) ∪ (c2 ∩ (a0 ∪ b1)))) |
9 | 5, 6, 8 | 3tr 65 | . 2 ((c2 ∩ (a0 ∪ b1)) ∪ ((c0 ∪ c1) ∩ c2)) = (c2 ∩ ((c0 ∪ c1) ∪ (c2 ∩ (a0 ∪ b1)))) |
10 | 1, 3, 9 | 3tr 65 | 1 (c2 ∩ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = (c2 ∩ ((c0 ∪ c1) ∪ (c2 ∩ (a0 ∪ b1)))) |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1122 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: dp41lemm 1194 |
Copyright terms: Public domain | W3C validator |