Proof of Theorem dp41leme
| Step | Hyp | Ref
| Expression |
| 1 | | mldual 1124 |
. . 3
(c2 ∩ ((c0 ∪ c1) ∪ (c2 ∩ (a0 ∪ b1)))) = ((c2 ∩ (c0 ∪ c1)) ∪ (c2 ∩ (a0 ∪ b1))) |
| 2 | | dp41lem.3 |
. . . . . 6
c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
| 3 | 2 | ran 78 |
. . . . 5
(c2 ∩ (a0 ∪ b1)) = (((a0 ∪ a1) ∩ (b0 ∪ b1)) ∩ (a0 ∪ b1)) |
| 4 | | anass 76 |
. . . . 5
(((a0 ∪ a1) ∩ (b0 ∪ b1)) ∩ (a0 ∪ b1)) = ((a0 ∪ a1) ∩ ((b0 ∪ b1) ∩ (a0 ∪ b1))) |
| 5 | | leor 159 |
. . . . . . . . 9
b1 ≤ (b0 ∪ b1) |
| 6 | 5 | mldual2i 1127 |
. . . . . . . 8
((b0 ∪ b1) ∩ (a0 ∪ b1)) = (((b0 ∪ b1) ∩ a0) ∪ b1) |
| 7 | | orcom 73 |
. . . . . . . 8
(((b0 ∪ b1) ∩ a0) ∪ b1) = (b1 ∪ ((b0 ∪ b1) ∩ a0)) |
| 8 | | ancom 74 |
. . . . . . . . 9
((b0 ∪ b1) ∩ a0) = (a0 ∩ (b0 ∪ b1)) |
| 9 | 8 | lor 70 |
. . . . . . . 8
(b1 ∪ ((b0 ∪ b1) ∩ a0)) = (b1 ∪ (a0 ∩ (b0 ∪ b1))) |
| 10 | 6, 7, 9 | 3tr 65 |
. . . . . . 7
((b0 ∪ b1) ∩ (a0 ∪ b1)) = (b1 ∪ (a0 ∩ (b0 ∪ b1))) |
| 11 | 10 | lan 77 |
. . . . . 6
((a0 ∪ a1) ∩ ((b0 ∪ b1) ∩ (a0 ∪ b1))) = ((a0 ∪ a1) ∩ (b1 ∪ (a0 ∩ (b0 ∪ b1)))) |
| 12 | | leao1 162 |
. . . . . . 7
(a0 ∩ (b0 ∪ b1)) ≤ (a0 ∪ a1) |
| 13 | 12 | mldual2i 1127 |
. . . . . 6
((a0 ∪ a1) ∩ (b1 ∪ (a0 ∩ (b0 ∪ b1)))) = (((a0 ∪ a1) ∩ b1) ∪ (a0 ∩ (b0 ∪ b1))) |
| 14 | | orcom 73 |
. . . . . . 7
(((a0 ∪ a1) ∩ b1) ∪ (a0 ∩ (b0 ∪ b1))) = ((a0 ∩ (b0 ∪ b1)) ∪ ((a0 ∪ a1) ∩ b1)) |
| 15 | | ancom 74 |
. . . . . . . 8
((a0 ∪ a1) ∩ b1) = (b1 ∩ (a0 ∪ a1)) |
| 16 | 15 | lor 70 |
. . . . . . 7
((a0 ∩ (b0 ∪ b1)) ∪ ((a0 ∪ a1) ∩ b1)) = ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1))) |
| 17 | 14, 16 | tr 62 |
. . . . . 6
(((a0 ∪ a1) ∩ b1) ∪ (a0 ∩ (b0 ∪ b1))) = ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1))) |
| 18 | 11, 13, 17 | 3tr 65 |
. . . . 5
((a0 ∪ a1) ∩ ((b0 ∪ b1) ∩ (a0 ∪ b1))) = ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1))) |
| 19 | 3, 4, 18 | 3tr 65 |
. . . 4
(c2 ∩ (a0 ∪ b1)) = ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1))) |
| 20 | 19 | lor 70 |
. . 3
((c2 ∩ (c0 ∪ c1)) ∪ (c2 ∩ (a0 ∪ b1))) = ((c2 ∩ (c0 ∪ c1)) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) |
| 21 | 1, 20 | tr 62 |
. 2
(c2 ∩ ((c0 ∪ c1) ∪ (c2 ∩ (a0 ∪ b1)))) = ((c2 ∩ (c0 ∪ c1)) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) |
| 22 | | lear 161 |
. . 3
(c2 ∩ (c0 ∪ c1)) ≤ (c0 ∪ c1) |
| 23 | 22 | leror 152 |
. 2
((c2 ∩ (c0 ∪ c1)) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) ≤ ((c0 ∪ c1) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) |
| 24 | 21, 23 | bltr 138 |
1
(c2 ∩ ((c0 ∪ c1) ∪ (c2 ∩ (a0 ∪ b1)))) ≤ ((c0 ∪ c1) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) |