QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  orordi GIF version

Theorem orordi 112
Description: Distribution of disjunction over disjunction. (Contributed by NM, 27-Aug-1997.)
Assertion
Ref Expression
orordi (a ∪ (bc)) = ((ab) ∪ (ac))

Proof of Theorem orordi
StepHypRef Expression
1 oridm 110 . . . 4 (aa) = a
21ax-r1 35 . . 3 a = (aa)
32ax-r5 38 . 2 (a ∪ (bc)) = ((aa) ∪ (bc))
4 or4 84 . 2 ((aa) ∪ (bc)) = ((ab) ∪ (ac))
53, 4ax-r2 36 1 (a ∪ (bc)) = ((ab) ∪ (ac))
Colors of variables: term
Syntax hints:   = wb 1  wo 6
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-t 41  df-f 42
This theorem is referenced by:  ska2  432  lem4  511  i3abs1  522  u12lem  771  orbi  842  i1orni1  847  lem4.6.6i1j3  1094
  Copyright terms: Public domain W3C validator