Proof of Theorem u2lembi
Step | Hyp | Ref
| Expression |
1 | | ancom 74 |
. . 3
((b ∪ (a⊥ ∩ b⊥ )) ∩ (a ∪ (a⊥ ∩ b⊥ ))) = ((a ∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ (a⊥ ∩ b⊥ ))) |
2 | | coman1 185 |
. . . . . 6
(a⊥ ∩ b⊥ ) C a⊥ |
3 | 2 | comcom7 460 |
. . . . 5
(a⊥ ∩ b⊥ ) C a |
4 | | coman2 186 |
. . . . . 6
(a⊥ ∩ b⊥ ) C b⊥ |
5 | 4 | comcom7 460 |
. . . . 5
(a⊥ ∩ b⊥ ) C b |
6 | 3, 5 | fh3r 475 |
. . . 4
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((a ∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ (a⊥ ∩ b⊥ ))) |
7 | 6 | ax-r1 35 |
. . 3
((a ∪ (a⊥ ∩ b⊥ )) ∩ (b ∪ (a⊥ ∩ b⊥ ))) = ((a ∩ b) ∪
(a⊥ ∩ b⊥ )) |
8 | 1, 7 | ax-r2 36 |
. 2
((b ∪ (a⊥ ∩ b⊥ )) ∩ (a ∪ (a⊥ ∩ b⊥ ))) = ((a ∩ b) ∪
(a⊥ ∩ b⊥ )) |
9 | | df-i2 45 |
. . 3
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
10 | | df-i2 45 |
. . . 4
(b →2 a) = (a ∪
(b⊥ ∩ a⊥ )) |
11 | | ancom 74 |
. . . . 5
(b⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) |
12 | 11 | lor 70 |
. . . 4
(a ∪ (b⊥ ∩ a⊥ )) = (a ∪ (a⊥ ∩ b⊥ )) |
13 | 10, 12 | ax-r2 36 |
. . 3
(b →2 a) = (a ∪
(a⊥ ∩ b⊥ )) |
14 | 9, 13 | 2an 79 |
. 2
((a →2 b) ∩ (b
→2 a)) = ((b ∪ (a⊥ ∩ b⊥ )) ∩ (a ∪ (a⊥ ∩ b⊥ ))) |
15 | | dfb 94 |
. 2
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
16 | 8, 14, 15 | 3tr1 63 |
1
((a →2 b) ∩ (b
→2 a)) = (a ≡ b) |