QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  i3orcom GIF version

Theorem i3orcom 525
Description: Commutative law for conjunction with Kalmbach implication. (Contributed by NM, 7-Nov-1997.)
Assertion
Ref Expression
i3orcom ((ab) →3 (ba)) = 1

Proof of Theorem i3orcom
StepHypRef Expression
1 i3id 251 . 2 ((ba) →3 (ba)) = 1
2 ax-a2 31 . . . 4 (ba) = (ab)
32ri3 253 . . 3 ((ba) →3 (ba)) = ((ab) →3 (ba))
43bi1 118 . 2 (((ba) →3 (ba)) ≡ ((ab) →3 (ba))) = 1
51, 4wwbmp 205 1 ((ab) →3 (ba)) = 1
Colors of variables: term
Syntax hints:   = wb 1  wo 6  1wt 8  3 wi3 14
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i3 46
This theorem is referenced by:  i3lor  533
  Copyright terms: Public domain W3C validator