Proof of Theorem lem3.3.6
Step | Hyp | Ref
| Expression |
1 | | anor3 90 |
. . . . . 6
(b⊥ ∩ c⊥ ) = (b ∪ c)⊥ |
2 | 1 | ax-r1 35 |
. . . . 5
(b ∪ c)⊥ = (b⊥ ∩ c⊥ ) |
3 | 2 | lan 77 |
. . . 4
(a⊥ ∩ (b ∪ c)⊥ ) = (a⊥ ∩ (b⊥ ∩ c⊥ )) |
4 | | anandir 115 |
. . . . 5
((a⊥ ∩ b⊥ ) ∩ c⊥ ) = ((a⊥ ∩ c⊥ ) ∩ (b⊥ ∩ c⊥ )) |
5 | | anass 76 |
. . . . 5
((a⊥ ∩ b⊥ ) ∩ c⊥ ) = (a⊥ ∩ (b⊥ ∩ c⊥ )) |
6 | | anor3 90 |
. . . . . 6
(a⊥ ∩ c⊥ ) = (a ∪ c)⊥ |
7 | 6, 1 | 2an 79 |
. . . . 5
((a⊥ ∩ c⊥ ) ∩ (b⊥ ∩ c⊥ )) = ((a ∪ c)⊥ ∩ (b ∪ c)⊥ ) |
8 | 4, 5, 7 | 3tr2 64 |
. . . 4
(a⊥ ∩ (b⊥ ∩ c⊥ )) = ((a ∪ c)⊥ ∩ (b ∪ c)⊥ ) |
9 | 3, 8 | ax-r2 36 |
. . 3
(a⊥ ∩ (b ∪ c)⊥ ) = ((a ∪ c)⊥ ∩ (b ∪ c)⊥ ) |
10 | 9 | lor 70 |
. 2
((b ∪ c) ∪ (a⊥ ∩ (b ∪ c)⊥ )) = ((b ∪ c) ∪
((a ∪ c)⊥ ∩ (b ∪ c)⊥ )) |
11 | | df-i2 45 |
. 2
(a →2 (b ∪ c)) =
((b ∪ c) ∪ (a⊥ ∩ (b ∪ c)⊥ )) |
12 | | df-i2 45 |
. 2
((a ∪ c) →2 (b ∪ c)) =
((b ∪ c) ∪ ((a
∪ c)⊥ ∩ (b ∪ c)⊥ )) |
13 | 10, 11, 12 | 3tr1 63 |
1
(a →2 (b ∪ c)) =
((a ∪ c) →2 (b ∪ c)) |