| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ortha | GIF version | ||
| Description: Property of orthogonality. (Contributed by NM, 10-Mar-2002.) |
| Ref | Expression |
|---|---|
| ortha.1 | a ≤ b⊥ |
| Ref | Expression |
|---|---|
| ortha | (a ∩ b) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ortha.1 | . . . . 5 a ≤ b⊥ | |
| 2 | 1 | lecon3 157 | . . . 4 b ≤ a⊥ |
| 3 | 2 | lelan 167 | . . 3 (a ∩ b) ≤ (a ∩ a⊥ ) |
| 4 | dff 101 | . . . 4 0 = (a ∩ a⊥ ) | |
| 5 | 4 | ax-r1 35 | . . 3 (a ∩ a⊥ ) = 0 |
| 6 | 3, 5 | lbtr 139 | . 2 (a ∩ b) ≤ 0 |
| 7 | le0 147 | . 2 0 ≤ (a ∩ b) | |
| 8 | 6, 7 | lebi 145 | 1 (a ∩ b) = 0 |
| Colors of variables: term |
| Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 ∩ wa 7 0wf 9 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
| This theorem is referenced by: mhlemlem1 874 mhlem 876 e2astlem1 895 lem3.3.7i4e1 1069 lem3.3.7i5e1 1072 |
| Copyright terms: Public domain | W3C validator |