Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > lem3.4.1 | GIF version |
Description: Equation 3.9 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 3-Jul-2005.) |
Ref | Expression |
---|---|
lem3.4.1 | ((a →1 b) →0 (a →2 b)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i0 43 | . 2 ((a →1 b) →0 (a →2 b)) = ((a →1 b)⊥ ∪ (a →2 b)) | |
2 | woml6 436 | . 2 ((a →1 b)⊥ ∪ (a →2 b)) = 1 | |
3 | 1, 2 | ax-r2 36 | 1 ((a →1 b) →0 (a →2 b)) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 1wt 8 →0 wi0 11 →1 wi1 12 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i0 43 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 df-cmtr 134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |