QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  lem3.4.1 GIF version

Theorem lem3.4.1 1075
Description: Equation 3.9 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 3-Jul-2005.)
Assertion
Ref Expression
lem3.4.1 ((a1 b) →0 (a2 b)) = 1

Proof of Theorem lem3.4.1
StepHypRef Expression
1 df-i0 43 . 2 ((a1 b) →0 (a2 b)) = ((a1 b) ∪ (a2 b))
2 woml6 436 . 2 ((a1 b) ∪ (a2 b)) = 1
31, 2ax-r2 36 1 ((a1 b) →0 (a2 b)) = 1
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  1wt 8  0 wi0 11  1 wi1 12  2 wi2 13
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-wom 361
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i0 43  df-i1 44  df-i2 45  df-le 129  df-le1 130  df-le2 131  df-cmtr 134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator