Proof of Theorem woml6
Step | Hyp | Ref
| Expression |
1 | | df-i1 44 |
. . . . . 6
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
2 | | df-a 40 |
. . . . . . 7
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
3 | 2 | lor 70 |
. . . . . 6
(a⊥ ∪ (a ∩ b)) =
(a⊥ ∪ (a⊥ ∪ b⊥ )⊥
) |
4 | 1, 3 | ax-r2 36 |
. . . . 5
(a →1 b) = (a⊥ ∪ (a⊥ ∪ b⊥ )⊥
) |
5 | 4 | ax-r4 37 |
. . . 4
(a →1 b)⊥ = (a⊥ ∪ (a⊥ ∪ b⊥ )⊥
)⊥ |
6 | | df-a 40 |
. . . . 5
(a ∩ (a⊥ ∪ b⊥ )) = (a⊥ ∪ (a⊥ ∪ b⊥ )⊥
)⊥ |
7 | 6 | ax-r1 35 |
. . . 4
(a⊥ ∪ (a⊥ ∪ b⊥ )⊥
)⊥ = (a ∩ (a⊥ ∪ b⊥ )) |
8 | 5, 7 | ax-r2 36 |
. . 3
(a →1 b)⊥ = (a ∩ (a⊥ ∪ b⊥ )) |
9 | | df-i2 45 |
. . 3
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
10 | 8, 9 | 2or 72 |
. 2
((a →1 b)⊥ ∪ (a →2 b)) = ((a ∩
(a⊥ ∪ b⊥ )) ∪ (b ∪ (a⊥ ∩ b⊥ ))) |
11 | | ax-a2 31 |
. . . . 5
((a ∩ (a⊥ ∪ b⊥ )) ∪ b) = (b ∪
(a ∩ (a⊥ ∪ b⊥ ))) |
12 | | ancom 74 |
. . . . . 6
(a ∩ (a⊥ ∪ b⊥ )) = ((a⊥ ∪ b⊥ ) ∩ a) |
13 | 12 | lor 70 |
. . . . 5
(b ∪ (a ∩ (a⊥ ∪ b⊥ ))) = (b ∪ ((a⊥ ∪ b⊥ ) ∩ a)) |
14 | 11, 13 | ax-r2 36 |
. . . 4
((a ∩ (a⊥ ∪ b⊥ )) ∪ b) = (b ∪
((a⊥ ∪ b⊥ ) ∩ a)) |
15 | 14 | ax-r5 38 |
. . 3
(((a ∩ (a⊥ ∪ b⊥ )) ∪ b) ∪ (a⊥ ∩ b⊥ )) = ((b ∪ ((a⊥ ∪ b⊥ ) ∩ a)) ∪ (a⊥ ∩ b⊥ )) |
16 | | ax-a3 32 |
. . 3
(((a ∩ (a⊥ ∪ b⊥ )) ∪ b) ∪ (a⊥ ∩ b⊥ )) = ((a ∩ (a⊥ ∪ b⊥ )) ∪ (b ∪ (a⊥ ∩ b⊥ ))) |
17 | | 1b 117 |
. . . . 5
(1 ≡ ((b ∪ ((a⊥ ∪ b⊥ ) ∩ a)) ∪ (a⊥ ∩ b⊥ ))) = ((b ∪ ((a⊥ ∪ b⊥ ) ∩ a)) ∪ (a⊥ ∩ b⊥ )) |
18 | 17 | ax-r1 35 |
. . . 4
((b ∪ ((a⊥ ∪ b⊥ ) ∩ a)) ∪ (a⊥ ∩ b⊥ )) = (1 ≡ ((b ∪ ((a⊥ ∪ b⊥ ) ∩ a)) ∪ (a⊥ ∩ b⊥ ))) |
19 | | wcomorr 412 |
. . . . . . . . . . . 12
C (b⊥ ,
(b⊥ ∪ a⊥ )) = 1 |
20 | | ax-a2 31 |
. . . . . . . . . . . . 13
(b⊥ ∪ a⊥ ) = (a⊥ ∪ b⊥ ) |
21 | 20 | bi1 118 |
. . . . . . . . . . . 12
((b⊥ ∪ a⊥ ) ≡ (a⊥ ∪ b⊥ )) = 1 |
22 | 19, 21 | wcbtr 411 |
. . . . . . . . . . 11
C (b⊥ ,
(a⊥ ∪ b⊥ )) = 1 |
23 | 22 | wcomcom 414 |
. . . . . . . . . 10
C ((a⊥
∪ b⊥ ), b⊥ ) = 1 |
24 | 23 | wcomcom3 416 |
. . . . . . . . 9
C ((a⊥
∪ b⊥
)⊥ , b⊥ )
= 1 |
25 | 24 | wcomcom5 420 |
. . . . . . . 8
C ((a⊥
∪ b⊥ ), b) = 1 |
26 | | wcomorr 412 |
. . . . . . . . . . 11
C (a⊥ ,
(a⊥ ∪ b⊥ )) = 1 |
27 | 26 | wcomcom 414 |
. . . . . . . . . 10
C ((a⊥
∪ b⊥ ), a⊥ ) = 1 |
28 | 27 | wcomcom3 416 |
. . . . . . . . 9
C ((a⊥
∪ b⊥
)⊥ , a⊥ )
= 1 |
29 | 28 | wcomcom5 420 |
. . . . . . . 8
C ((a⊥
∪ b⊥ ), a) = 1 |
30 | 25, 29 | wfh4 426 |
. . . . . . 7
((b ∪ ((a⊥ ∪ b⊥ ) ∩ a)) ≡ ((b
∪ (a⊥ ∪ b⊥ )) ∩ (b ∪ a))) =
1 |
31 | 30 | wr5-2v 366 |
. . . . . 6
(((b ∪ ((a⊥ ∪ b⊥ ) ∩ a)) ∪ (a⊥ ∩ b⊥ )) ≡ (((b ∪ (a⊥ ∪ b⊥ )) ∩ (b ∪ a))
∪ (a⊥ ∩ b⊥ ))) = 1 |
32 | | or12 80 |
. . . . . . . . . . . . 13
(b ∪ (a⊥ ∪ b⊥ )) = (a⊥ ∪ (b ∪ b⊥ )) |
33 | | df-t 41 |
. . . . . . . . . . . . . . 15
1 = (b ∪ b⊥ ) |
34 | 33 | lor 70 |
. . . . . . . . . . . . . 14
(a⊥ ∪ 1) =
(a⊥ ∪ (b ∪ b⊥ )) |
35 | 34 | ax-r1 35 |
. . . . . . . . . . . . 13
(a⊥ ∪ (b ∪ b⊥ )) = (a⊥ ∪ 1) |
36 | | or1 104 |
. . . . . . . . . . . . 13
(a⊥ ∪ 1) =
1 |
37 | 32, 35, 36 | 3tr 65 |
. . . . . . . . . . . 12
(b ∪ (a⊥ ∪ b⊥ )) = 1 |
38 | 37 | ran 78 |
. . . . . . . . . . 11
((b ∪ (a⊥ ∪ b⊥ )) ∩ (b ∪ a)) = (1
∩ (b ∪ a)) |
39 | | ancom 74 |
. . . . . . . . . . 11
(1 ∩ (b ∪ a)) = ((b ∪
a) ∩ 1) |
40 | 38, 39 | ax-r2 36 |
. . . . . . . . . 10
((b ∪ (a⊥ ∪ b⊥ )) ∩ (b ∪ a)) =
((b ∪ a) ∩ 1) |
41 | | an1 106 |
. . . . . . . . . 10
((b ∪ a) ∩ 1) = (b
∪ a) |
42 | | ax-a2 31 |
. . . . . . . . . 10
(b ∪ a) = (a ∪
b) |
43 | 40, 41, 42 | 3tr 65 |
. . . . . . . . 9
((b ∪ (a⊥ ∪ b⊥ )) ∩ (b ∪ a)) =
(a ∪ b) |
44 | | anor3 90 |
. . . . . . . . 9
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
45 | 43, 44 | 2or 72 |
. . . . . . . 8
(((b ∪ (a⊥ ∪ b⊥ )) ∩ (b ∪ a))
∪ (a⊥ ∩ b⊥ )) = ((a ∪ b) ∪
(a ∪ b)⊥ ) |
46 | | df-t 41 |
. . . . . . . . 9
1 = ((a ∪ b) ∪ (a
∪ b)⊥
) |
47 | 46 | ax-r1 35 |
. . . . . . . 8
((a ∪ b) ∪ (a
∪ b)⊥ ) =
1 |
48 | 45, 47 | ax-r2 36 |
. . . . . . 7
(((b ∪ (a⊥ ∪ b⊥ )) ∩ (b ∪ a))
∪ (a⊥ ∩ b⊥ )) = 1 |
49 | 48 | bi1 118 |
. . . . . 6
((((b ∪ (a⊥ ∪ b⊥ )) ∩ (b ∪ a))
∪ (a⊥ ∩ b⊥ )) ≡ 1) =
1 |
50 | 31, 49 | wr2 371 |
. . . . 5
(((b ∪ ((a⊥ ∪ b⊥ ) ∩ a)) ∪ (a⊥ ∩ b⊥ )) ≡ 1) =
1 |
51 | 50 | wr1 197 |
. . . 4
(1 ≡ ((b ∪ ((a⊥ ∪ b⊥ ) ∩ a)) ∪ (a⊥ ∩ b⊥ ))) = 1 |
52 | 18, 51 | ax-r2 36 |
. . 3
((b ∪ ((a⊥ ∪ b⊥ ) ∩ a)) ∪ (a⊥ ∩ b⊥ )) = 1 |
53 | 15, 16, 52 | 3tr2 64 |
. 2
((a ∩ (a⊥ ∪ b⊥ )) ∪ (b ∪ (a⊥ ∩ b⊥ ))) = 1 |
54 | 10, 53 | ax-r2 36 |
1
((a →1 b)⊥ ∪ (a →2 b)) = 1 |