Proof of Theorem lem4.6.6i2j1
Step | Hyp | Ref
| Expression |
1 | | leor 159 |
. . . . 5
b ≤ (a⊥ ∪ b) |
2 | | leao1 162 |
. . . . 5
(a⊥ ∩ b⊥ ) ≤ (a⊥ ∪ b) |
3 | 1, 2 | lel2or 170 |
. . . 4
(b ∪ (a⊥ ∩ b⊥ )) ≤ (a⊥ ∪ b) |
4 | | lear 161 |
. . . . 5
(a ∩ b) ≤ b |
5 | 4 | lelor 166 |
. . . 4
(a⊥ ∪ (a ∩ b)) ≤
(a⊥ ∪ b) |
6 | 3, 5 | lel2or 170 |
. . 3
((b ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ (a ∩ b)))
≤ (a⊥ ∪ b) |
7 | | leo 158 |
. . . . 5
a⊥ ≤ (a⊥ ∪ (a ∩ b)) |
8 | 7 | lerr 150 |
. . . 4
a⊥ ≤ ((b ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ (a ∩ b))) |
9 | | leo 158 |
. . . . 5
b ≤ (b ∪ (a⊥ ∩ b⊥ )) |
10 | 9 | ler 149 |
. . . 4
b ≤ ((b ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ (a ∩ b))) |
11 | 8, 10 | lel2or 170 |
. . 3
(a⊥ ∪ b) ≤ ((b
∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ (a ∩ b))) |
12 | 6, 11 | lebi 145 |
. 2
((b ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ (a ∩ b))) =
(a⊥ ∪ b) |
13 | | df-i2 45 |
. . 3
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
14 | | df-i1 44 |
. . 3
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
15 | 13, 14 | 2or 72 |
. 2
((a →2 b) ∪ (a
→1 b)) = ((b ∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∪ (a ∩ b))) |
16 | | df-i0 43 |
. 2
(a →0 b) = (a⊥ ∪ b) |
17 | 12, 15, 16 | 3tr1 63 |
1
((a →2 b) ∪ (a
→1 b)) = (a →0 b) |