Proof of Theorem dfi3b
Step | Hyp | Ref
| Expression |
1 | | ax-a2 31 |
. . 3
(((a⊥ ∩
(a⊥ ∩ b)) ∪ (b
∩ (a⊥ ∩ b))) ∪ (((a⊥ ∪ b) ∩ a)
∪ ((a⊥ ∪ b) ∩ (a⊥ ∩ b⊥ )))) = ((((a⊥ ∪ b) ∩ a)
∪ ((a⊥ ∪ b) ∩ (a⊥ ∩ b⊥ ))) ∪ ((a⊥ ∩ (a⊥ ∩ b)) ∪ (b
∩ (a⊥ ∩ b)))) |
2 | | ax-a3 32 |
. . . 4
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = ((a⊥ ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a ∩ (a⊥ ∪ b)))) |
3 | | oridm 110 |
. . . . . . 7
((a⊥ ∩ b) ∪ (a⊥ ∩ b)) = (a⊥ ∩ b) |
4 | 3 | ax-r1 35 |
. . . . . 6
(a⊥ ∩ b) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b)) |
5 | | anidm 111 |
. . . . . . . . . 10
(a⊥ ∩ a⊥ ) = a⊥ |
6 | 5 | ax-r1 35 |
. . . . . . . . 9
a⊥ = (a⊥ ∩ a⊥ ) |
7 | 6 | ran 78 |
. . . . . . . 8
(a⊥ ∩ b) = ((a⊥ ∩ a⊥ ) ∩ b) |
8 | | anass 76 |
. . . . . . . 8
((a⊥ ∩ a⊥ ) ∩ b) = (a⊥ ∩ (a⊥ ∩ b)) |
9 | 7, 8 | ax-r2 36 |
. . . . . . 7
(a⊥ ∩ b) = (a⊥ ∩ (a⊥ ∩ b)) |
10 | | anidm 111 |
. . . . . . . . . 10
(b ∩ b) = b |
11 | 10 | ax-r1 35 |
. . . . . . . . 9
b = (b ∩ b) |
12 | 11 | lan 77 |
. . . . . . . 8
(a⊥ ∩ b) = (a⊥ ∩ (b ∩ b)) |
13 | | an12 81 |
. . . . . . . 8
(a⊥ ∩ (b ∩ b)) =
(b ∩ (a⊥ ∩ b)) |
14 | 12, 13 | ax-r2 36 |
. . . . . . 7
(a⊥ ∩ b) = (b ∩
(a⊥ ∩ b)) |
15 | 9, 14 | 2or 72 |
. . . . . 6
((a⊥ ∩ b) ∪ (a⊥ ∩ b)) = ((a⊥ ∩ (a⊥ ∩ b)) ∪ (b
∩ (a⊥ ∩ b))) |
16 | 4, 15 | ax-r2 36 |
. . . . 5
(a⊥ ∩ b) = ((a⊥ ∩ (a⊥ ∩ b)) ∪ (b
∩ (a⊥ ∩ b))) |
17 | | lea 160 |
. . . . . . . . . . 11
(a⊥ ∩ b⊥ ) ≤ a⊥ |
18 | | leo 158 |
. . . . . . . . . . 11
a⊥ ≤ (a⊥ ∪ b) |
19 | 17, 18 | letr 137 |
. . . . . . . . . 10
(a⊥ ∩ b⊥ ) ≤ (a⊥ ∪ b) |
20 | 19 | df2le2 136 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∩ (a⊥ ∪ b)) = (a⊥ ∩ b⊥ ) |
21 | 20 | ax-r1 35 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) = ((a⊥ ∩ b⊥ ) ∩ (a⊥ ∪ b)) |
22 | | ancom 74 |
. . . . . . . 8
((a⊥ ∩ b⊥ ) ∩ (a⊥ ∪ b)) = ((a⊥ ∪ b) ∩ (a⊥ ∩ b⊥ )) |
23 | 21, 22 | ax-r2 36 |
. . . . . . 7
(a⊥ ∩ b⊥ ) = ((a⊥ ∪ b) ∩ (a⊥ ∩ b⊥ )) |
24 | | ancom 74 |
. . . . . . 7
(a ∩ (a⊥ ∪ b)) = ((a⊥ ∪ b) ∩ a) |
25 | 23, 24 | 2or 72 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∪ (a ∩ (a⊥ ∪ b))) = (((a⊥ ∪ b) ∩ (a⊥ ∩ b⊥ )) ∪ ((a⊥ ∪ b) ∩ a)) |
26 | | ax-a2 31 |
. . . . . 6
(((a⊥ ∪
b) ∩ (a⊥ ∩ b⊥ )) ∪ ((a⊥ ∪ b) ∩ a)) =
(((a⊥ ∪ b) ∩ a)
∪ ((a⊥ ∪ b) ∩ (a⊥ ∩ b⊥ ))) |
27 | 25, 26 | ax-r2 36 |
. . . . 5
((a⊥ ∩ b⊥ ) ∪ (a ∩ (a⊥ ∪ b))) = (((a⊥ ∪ b) ∩ a)
∪ ((a⊥ ∪ b) ∩ (a⊥ ∩ b⊥ ))) |
28 | 16, 27 | 2or 72 |
. . . 4
((a⊥ ∩ b) ∪ ((a⊥ ∩ b⊥ ) ∪ (a ∩ (a⊥ ∪ b)))) = (((a⊥ ∩ (a⊥ ∩ b)) ∪ (b
∩ (a⊥ ∩ b))) ∪ (((a⊥ ∪ b) ∩ a)
∪ ((a⊥ ∪ b) ∩ (a⊥ ∩ b⊥ )))) |
29 | 2, 28 | ax-r2 36 |
. . 3
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = (((a⊥ ∩ (a⊥ ∩ b)) ∪ (b
∩ (a⊥ ∩ b))) ∪ (((a⊥ ∪ b) ∩ a)
∪ ((a⊥ ∪ b) ∩ (a⊥ ∩ b⊥ )))) |
30 | | comor1 461 |
. . . . . 6
(a⊥ ∪ b) C a⊥ |
31 | 30 | comcom7 460 |
. . . . 5
(a⊥ ∪ b) C a |
32 | | comor2 462 |
. . . . . . 7
(a⊥ ∪ b) C b |
33 | 32 | comcom2 183 |
. . . . . 6
(a⊥ ∪ b) C b⊥ |
34 | 30, 33 | com2an 484 |
. . . . 5
(a⊥ ∪ b) C (a⊥ ∩ b⊥ ) |
35 | 31, 34 | fh1 469 |
. . . 4
((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b⊥ ))) = (((a⊥ ∪ b) ∩ a)
∪ ((a⊥ ∪ b) ∩ (a⊥ ∩ b⊥ ))) |
36 | | coman1 185 |
. . . . 5
(a⊥ ∩ b) C a⊥ |
37 | | coman2 186 |
. . . . 5
(a⊥ ∩ b) C b |
38 | 36, 37 | fh1r 473 |
. . . 4
((a⊥ ∪ b) ∩ (a⊥ ∩ b)) = ((a⊥ ∩ (a⊥ ∩ b)) ∪ (b
∩ (a⊥ ∩ b))) |
39 | 35, 38 | 2or 72 |
. . 3
(((a⊥ ∪
b) ∩ (a ∪ (a⊥ ∩ b⊥ ))) ∪ ((a⊥ ∪ b) ∩ (a⊥ ∩ b))) = ((((a⊥ ∪ b) ∩ a)
∪ ((a⊥ ∪ b) ∩ (a⊥ ∩ b⊥ ))) ∪ ((a⊥ ∩ (a⊥ ∩ b)) ∪ (b
∩ (a⊥ ∩ b)))) |
40 | 1, 29, 39 | 3tr1 63 |
. 2
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = (((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b⊥ ))) ∪ ((a⊥ ∪ b) ∩ (a⊥ ∩ b))) |
41 | | df-i3 46 |
. 2
(a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
42 | 31, 34 | com2or 483 |
. . 3
(a⊥ ∪ b) C (a
∪ (a⊥ ∩ b⊥ )) |
43 | 30, 32 | com2an 484 |
. . 3
(a⊥ ∪ b) C (a⊥ ∩ b) |
44 | 42, 43 | fh1 469 |
. 2
((a⊥ ∪ b) ∩ ((a
∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∩ b))) = (((a⊥ ∪ b) ∩ (a
∪ (a⊥ ∩ b⊥ ))) ∪ ((a⊥ ∪ b) ∩ (a⊥ ∩ b))) |
45 | 40, 41, 44 | 3tr1 63 |
1
(a →3 b) = ((a⊥ ∪ b) ∩ ((a
∪ (a⊥ ∩ b⊥ )) ∪ (a⊥ ∩ b))) |