Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > lel | GIF version |
Description: Add conjunct to left of l.e. (Contributed by NM, 27-Aug-1997.) |
Ref | Expression |
---|---|
le.1 | a ≤ b |
Ref | Expression |
---|---|
lel | (a ∩ c) ≤ b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an32 83 | . . 3 ((a ∩ c) ∩ b) = ((a ∩ b) ∩ c) | |
2 | le.1 | . . . . 5 a ≤ b | |
3 | 2 | df2le2 136 | . . . 4 (a ∩ b) = a |
4 | 3 | ran 78 | . . 3 ((a ∩ b) ∩ c) = (a ∩ c) |
5 | 1, 4 | ax-r2 36 | . 2 ((a ∩ c) ∩ b) = (a ∩ c) |
6 | 5 | df2le1 135 | 1 (a ∩ c) ≤ b |
Colors of variables: term |
Syntax hints: ≤ wle 2 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-le1 130 df-le2 131 |
This theorem is referenced by: negantlem9 859 neg3antlem2 865 marsdenlem3 882 cancellem 891 oa3moa3 1029 lem3.4.3 1076 |
Copyright terms: Public domain | W3C validator |