| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > nom41 | GIF version | ||
| Description: Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. (Contributed by NM, 7-Feb-1999.) |
| Ref | Expression |
|---|---|
| nom41 | ((a ∪ b) →1 b) = (a →2 b) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 74 | . . . . . 6 (b⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) | |
| 2 | anor3 90 | . . . . . 6 (a⊥ ∩ b⊥ ) = (a ∪ b)⊥ | |
| 3 | 1, 2 | ax-r2 36 | . . . . 5 (b⊥ ∩ a⊥ ) = (a ∪ b)⊥ |
| 4 | 3 | ud2lem0a 258 | . . . 4 (b⊥ →2 (b⊥ ∩ a⊥ )) = (b⊥ →2 (a ∪ b)⊥ ) |
| 5 | 4 | ax-r1 35 | . . 3 (b⊥ →2 (a ∪ b)⊥ ) = (b⊥ →2 (b⊥ ∩ a⊥ )) |
| 6 | nom12 309 | . . 3 (b⊥ →2 (b⊥ ∩ a⊥ )) = (b⊥ →1 a⊥ ) | |
| 7 | 5, 6 | ax-r2 36 | . 2 (b⊥ →2 (a ∪ b)⊥ ) = (b⊥ →1 a⊥ ) |
| 8 | i1i2 266 | . 2 ((a ∪ b) →1 b) = (b⊥ →2 (a ∪ b)⊥ ) | |
| 9 | i2i1 267 | . 2 (a →2 b) = (b⊥ →1 a⊥ ) | |
| 10 | 7, 8, 9 | 3tr1 63 | 1 ((a ∪ b) →1 b) = (a →2 b) |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 →2 wi2 13 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-i1 44 df-i2 45 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |