QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  nom60 GIF version

Theorem nom60 337
Description: Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. (Contributed by NM, 7-Feb-1999.)
Assertion
Ref Expression
nom60 (b0 (ab)) = (a2 b)

Proof of Theorem nom60
StepHypRef Expression
1 ancom 74 . . 3 ((b ∪ (ab)) ∩ ((ab)b)) = (((ab)b) ∩ (b ∪ (ab)))
2 df-id0 49 . . 3 (b0 (ab)) = ((b ∪ (ab)) ∩ ((ab)b))
3 df-id0 49 . . 3 ((ab) ≡0 b) = (((ab)b) ∩ (b ∪ (ab)))
41, 2, 33tr1 63 . 2 (b0 (ab)) = ((ab) ≡0 b)
5 nom50 331 . 2 ((ab) ≡0 b) = (a2 b)
64, 5ax-r2 36 1 (b0 (ab)) = (a2 b)
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  2 wi2 13  0 wid0 17
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-id0 49  df-le1 130  df-le2 131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator