Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > nom61 | GIF version |
Description: Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. (Contributed by NM, 7-Feb-1999.) |
Ref | Expression |
---|---|
nom61 | (b ≡1 (a ∪ b)) = (a →2 b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nomb41 299 | . . 3 ((a ∪ b) ≡4 b) = (b ≡1 (a ∪ b)) | |
2 | 1 | ax-r1 35 | . 2 (b ≡1 (a ∪ b)) = ((a ∪ b) ≡4 b) |
3 | nom54 335 | . 2 ((a ∪ b) ≡4 b) = (a →2 b) | |
4 | 2, 3 | ax-r2 36 | 1 (b ≡1 (a ∪ b)) = (a →2 b) |
Colors of variables: term |
Syntax hints: = wb 1 ∪ wo 6 →2 wi2 13 ≡1 wid1 18 ≡4 wid4 21 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-i1 44 df-i2 45 df-id1 50 df-id2 51 df-id3 52 df-id4 53 df-le1 130 df-le2 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |