Proof of Theorem oa3-3lem
Step | Hyp | Ref
| Expression |
1 | | dfb 94 |
. . . . . 6
(a ≡ b) = ((a ∩
b) ∪ (a⊥ ∩ b⊥ )) |
2 | 1 | ax-r1 35 |
. . . . 5
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) = (a ≡ b) |
3 | | an1 106 |
. . . . . . . . 9
(a ∩ 1) = a |
4 | | ax-a1 30 |
. . . . . . . . 9
a = a⊥
⊥ |
5 | 3, 4 | ax-r2 36 |
. . . . . . . 8
(a ∩ 1) = a⊥
⊥ |
6 | 5 | ax-r5 38 |
. . . . . . 7
((a ∩ 1) ∪ (a⊥ ∩ c)) = (a⊥ ⊥ ∪
(a⊥ ∩ c)) |
7 | | df-i1 44 |
. . . . . . . 8
(a⊥ →1
c) = (a⊥ ⊥ ∪
(a⊥ ∩ c)) |
8 | 7 | ax-r1 35 |
. . . . . . 7
(a⊥
⊥ ∪ (a⊥ ∩ c)) = (a⊥ →1 c) |
9 | 6, 8 | ax-r2 36 |
. . . . . 6
((a ∩ 1) ∪ (a⊥ ∩ c)) = (a⊥ →1 c) |
10 | | an1 106 |
. . . . . . . . 9
(b ∩ 1) = b |
11 | | ax-a1 30 |
. . . . . . . . 9
b = b⊥
⊥ |
12 | 10, 11 | ax-r2 36 |
. . . . . . . 8
(b ∩ 1) = b⊥
⊥ |
13 | 12 | ax-r5 38 |
. . . . . . 7
((b ∩ 1) ∪ (b⊥ ∩ c)) = (b⊥ ⊥ ∪
(b⊥ ∩ c)) |
14 | | df-i1 44 |
. . . . . . . 8
(b⊥ →1
c) = (b⊥ ⊥ ∪
(b⊥ ∩ c)) |
15 | 14 | ax-r1 35 |
. . . . . . 7
(b⊥
⊥ ∪ (b⊥ ∩ c)) = (b⊥ →1 c) |
16 | 13, 15 | ax-r2 36 |
. . . . . 6
((b ∩ 1) ∪ (b⊥ ∩ c)) = (b⊥ →1 c) |
17 | 9, 16 | 2an 79 |
. . . . 5
(((a ∩ 1) ∪ (a⊥ ∩ c)) ∩ ((b
∩ 1) ∪ (b⊥ ∩
c))) = ((a⊥ →1 c) ∩ (b⊥ →1 c)) |
18 | 2, 17 | 2or 72 |
. . . 4
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (((a ∩ 1) ∪ (a⊥ ∩ c)) ∩ ((b
∩ 1) ∪ (b⊥ ∩
c)))) = ((a ≡ b)
∪ ((a⊥ →1
c) ∩ (b⊥ →1 c))) |
19 | 18 | lan 77 |
. . 3
(b ∩ (((a ∩ b) ∪
(a⊥ ∩ b⊥ )) ∪ (((a ∩ 1) ∪ (a⊥ ∩ c)) ∩ ((b
∩ 1) ∪ (b⊥ ∩
c))))) = (b ∩ ((a
≡ b) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))) |
20 | 19 | lor 70 |
. 2
(a ∪ (b ∩ (((a
∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (((a ∩ 1) ∪ (a⊥ ∩ c)) ∩ ((b
∩ 1) ∪ (b⊥ ∩
c)))))) = (a ∪ (b ∩
((a ≡ b) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c))))) |
21 | 20 | lan 77 |
1
(a⊥ ∩ (a ∪ (b ∩
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (((a ∩ 1) ∪ (a⊥ ∩ c)) ∩ ((b
∩ 1) ∪ (b⊥ ∩
c))))))) = (a⊥ ∩ (a ∪ (b ∩
((a ≡ b) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))))) |