Proof of Theorem oa3-6to3
Step | Hyp | Ref
| Expression |
1 | | oa3-3lem 981 |
. . 3
(a⊥ ∩ (a ∪ (b ∩
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (((a ∩ 1) ∪ (a⊥ ∩ c)) ∩ ((b
∩ 1) ∪ (b⊥ ∩
c))))))) = (a⊥ ∩ (a ∪ (b ∩
((a ≡ b) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))))) |
2 | 1 | ax-r1 35 |
. 2
(a⊥ ∩ (a ∪ (b ∩
((a ≡ b) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))))) = (a⊥ ∩ (a ∪ (b ∩
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (((a ∩ 1) ∪ (a⊥ ∩ c)) ∩ ((b
∩ 1) ∪ (b⊥ ∩
c))))))) |
3 | | leid 148 |
. . 3
a⊥ ≤ a⊥ |
4 | | leid 148 |
. . 3
b⊥ ≤ b⊥ |
5 | | df-f 42 |
. . . . 5
0 = 1⊥ |
6 | 5 | ax-r1 35 |
. . . 4
1⊥ = 0 |
7 | | le0 147 |
. . . 4
0 ≤ c |
8 | 6, 7 | bltr 138 |
. . 3
1⊥ ≤ c |
9 | | ancom 74 |
. . . . . . . 8
(1 ∩ c) = (c ∩ 1) |
10 | | an1 106 |
. . . . . . . 8
(c ∩ 1) = c |
11 | 9, 10 | ax-r2 36 |
. . . . . . 7
(1 ∩ c) = c |
12 | | dff 101 |
. . . . . . . . . 10
0 = (a ∩ a⊥ ) |
13 | | dff 101 |
. . . . . . . . . 10
0 = (b ∩ b⊥ ) |
14 | 12, 13 | 2or 72 |
. . . . . . . . 9
(0 ∪ 0) = ((a ∩ a⊥ ) ∪ (b ∩ b⊥ )) |
15 | 14 | ax-r1 35 |
. . . . . . . 8
((a ∩ a⊥ ) ∪ (b ∩ b⊥ )) = (0 ∪
0) |
16 | | or0 102 |
. . . . . . . 8
(0 ∪ 0) = 0 |
17 | 15, 16 | ax-r2 36 |
. . . . . . 7
((a ∩ a⊥ ) ∪ (b ∩ b⊥ )) = 0 |
18 | 11, 17 | 2or 72 |
. . . . . 6
((1 ∩ c) ∪ ((a ∩ a⊥ ) ∪ (b ∩ b⊥ ))) = (c ∪ 0) |
19 | | or0 102 |
. . . . . 6
(c ∪ 0) = c |
20 | 18, 19 | ax-r2 36 |
. . . . 5
((1 ∩ c) ∪ ((a ∩ a⊥ ) ∪ (b ∩ b⊥ ))) = c |
21 | 20 | ax-r1 35 |
. . . 4
c = ((1 ∩ c) ∪ ((a
∩ a⊥ ) ∪ (b ∩ b⊥ ))) |
22 | | ax-a2 31 |
. . . 4
((1 ∩ c) ∪ ((a ∩ a⊥ ) ∪ (b ∩ b⊥ ))) = (((a ∩ a⊥ ) ∪ (b ∩ b⊥ )) ∪ (1 ∩ c)) |
23 | 21, 22 | ax-r2 36 |
. . 3
c = (((a ∩ a⊥ ) ∪ (b ∩ b⊥ )) ∪ (1 ∩ c)) |
24 | | oa3-6lem 980 |
. . . 4
((a →1 c) ∩ (a
∪ (b ∩ (((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c))) ∪ (((a ∩ 1) ∪ ((a →1 c) ∩ (1 →1 c))) ∩ ((b
∩ 1) ∪ ((b →1
c) ∩ (1 →1
c)))))))) = ((a →1 c) ∩ (a
∪ (b ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c)))))) |
25 | | oa3-6to3.1 |
. . . 4
((a →1 c) ∩ (a
∪ (b ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c)))))) ≤ c |
26 | 24, 25 | bltr 138 |
. . 3
((a →1 c) ∩ (a
∪ (b ∩ (((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c))) ∪ (((a ∩ 1) ∪ ((a →1 c) ∩ (1 →1 c))) ∩ ((b
∩ 1) ∪ ((b →1
c) ∩ (1 →1
c)))))))) ≤ c |
27 | 3, 4, 8, 23, 26 | oa4to6dual 964 |
. 2
(a⊥ ∩ (a ∪ (b ∩
(((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (((a ∩ 1) ∪ (a⊥ ∩ c)) ∩ ((b
∩ 1) ∪ (b⊥ ∩
c))))))) ≤ c |
28 | 2, 27 | bltr 138 |
1
(a⊥ ∩ (a ∪ (b ∩
((a ≡ b) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))))) ≤ c |