Proof of Theorem oa3-5lem
| Step | Hyp | Ref
| Expression |
| 1 | | or12 80 |
. . . . . . 7
((a ∩ c) ∪ (a⊥ ∪ (a ∩ c))) =
(a⊥ ∪ ((a ∩ c) ∪
(a ∩ c))) |
| 2 | | oridm 110 |
. . . . . . . 8
((a ∩ c) ∪ (a
∩ c)) = (a ∩ c) |
| 3 | 2 | lor 70 |
. . . . . . 7
(a⊥ ∪
((a ∩ c) ∪ (a
∩ c))) = (a⊥ ∪ (a ∩ c)) |
| 4 | 1, 3 | ax-r2 36 |
. . . . . 6
((a ∩ c) ∪ (a⊥ ∪ (a ∩ c))) =
(a⊥ ∪ (a ∩ c)) |
| 5 | | an1 106 |
. . . . . . . 8
((a →1 c) ∩ 1) = (a
→1 c) |
| 6 | | df-i1 44 |
. . . . . . . 8
(a →1 c) = (a⊥ ∪ (a ∩ c)) |
| 7 | 5, 6 | ax-r2 36 |
. . . . . . 7
((a →1 c) ∩ 1) = (a⊥ ∪ (a ∩ c)) |
| 8 | 7 | lor 70 |
. . . . . 6
((a ∩ c) ∪ ((a
→1 c) ∩ 1)) =
((a ∩ c) ∪ (a⊥ ∪ (a ∩ c))) |
| 9 | 4, 8, 6 | 3tr1 63 |
. . . . 5
((a ∩ c) ∪ ((a
→1 c) ∩ 1)) = (a →1 c) |
| 10 | | or12 80 |
. . . . . . . . 9
((c ∩ b) ∪ (b⊥ ∪ (b ∩ c))) =
(b⊥ ∪ ((c ∩ b) ∪
(b ∩ c))) |
| 11 | | ancom 74 |
. . . . . . . . . . . 12
(c ∩ b) = (b ∩
c) |
| 12 | 11 | ax-r5 38 |
. . . . . . . . . . 11
((c ∩ b) ∪ (b
∩ c)) = ((b ∩ c) ∪
(b ∩ c)) |
| 13 | | oridm 110 |
. . . . . . . . . . 11
((b ∩ c) ∪ (b
∩ c)) = (b ∩ c) |
| 14 | 12, 13 | ax-r2 36 |
. . . . . . . . . 10
((c ∩ b) ∪ (b
∩ c)) = (b ∩ c) |
| 15 | 14 | lor 70 |
. . . . . . . . 9
(b⊥ ∪
((c ∩ b) ∪ (b
∩ c))) = (b⊥ ∪ (b ∩ c)) |
| 16 | 10, 15 | ax-r2 36 |
. . . . . . . 8
((c ∩ b) ∪ (b⊥ ∪ (b ∩ c))) =
(b⊥ ∪ (b ∩ c)) |
| 17 | | ancom 74 |
. . . . . . . . . 10
(1 ∩ (b →1
c)) = ((b →1 c) ∩ 1) |
| 18 | | an1 106 |
. . . . . . . . . 10
((b →1 c) ∩ 1) = (b
→1 c) |
| 19 | | df-i1 44 |
. . . . . . . . . 10
(b →1 c) = (b⊥ ∪ (b ∩ c)) |
| 20 | 17, 18, 19 | 3tr 65 |
. . . . . . . . 9
(1 ∩ (b →1
c)) = (b⊥ ∪ (b ∩ c)) |
| 21 | 20 | lor 70 |
. . . . . . . 8
((c ∩ b) ∪ (1 ∩ (b →1 c))) = ((c ∩
b) ∪ (b⊥ ∪ (b ∩ c))) |
| 22 | 16, 21, 19 | 3tr1 63 |
. . . . . . 7
((c ∩ b) ∪ (1 ∩ (b →1 c))) = (b
→1 c) |
| 23 | 22 | lan 77 |
. . . . . 6
(((a ∩ b) ∪ ((a
→1 c) ∩ (b →1 c))) ∩ ((c
∩ b) ∪ (1 ∩ (b →1 c)))) = (((a
∩ b) ∪ ((a →1 c) ∩ (b
→1 c))) ∩ (b →1 c)) |
| 24 | | ancom 74 |
. . . . . 6
(((a ∩ b) ∪ ((a
→1 c) ∩ (b →1 c))) ∩ (b
→1 c)) = ((b →1 c) ∩ ((a
∩ b) ∪ ((a →1 c) ∩ (b
→1 c)))) |
| 25 | 23, 24 | ax-r2 36 |
. . . . 5
(((a ∩ b) ∪ ((a
→1 c) ∩ (b →1 c))) ∩ ((c
∩ b) ∪ (1 ∩ (b →1 c)))) = ((b
→1 c) ∩ ((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c)))) |
| 26 | 9, 25 | 2or 72 |
. . . 4
(((a ∩ c) ∪ ((a
→1 c) ∩ 1)) ∪
(((a ∩ b) ∪ ((a
→1 c) ∩ (b →1 c))) ∩ ((c
∩ b) ∪ (1 ∩ (b →1 c))))) = ((a
→1 c) ∪ ((b →1 c) ∩ ((a
∩ b) ∪ ((a →1 c) ∩ (b
→1 c))))) |
| 27 | 26 | lan 77 |
. . 3
(c ∩ (((a ∩ c) ∪
((a →1 c) ∩ 1)) ∪ (((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c))) ∩ ((c ∩ b) ∪
(1 ∩ (b →1 c)))))) = (c
∩ ((a →1 c) ∪ ((b
→1 c) ∩ ((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c)))))) |
| 28 | 27 | lor 70 |
. 2
(a ∪ (c ∩ (((a
∩ c) ∪ ((a →1 c) ∩ 1)) ∪ (((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c))) ∩ ((c ∩ b) ∪
(1 ∩ (b →1 c))))))) = (a
∪ (c ∩ ((a →1 c) ∪ ((b
→1 c) ∩ ((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c))))))) |
| 29 | 28 | lan 77 |
1
((a →1 c) ∩ (a
∪ (c ∩ (((a ∩ c) ∪
((a →1 c) ∩ 1)) ∪ (((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c))) ∩ ((c ∩ b) ∪
(1 ∩ (b →1 c)))))))) = ((a
→1 c) ∩ (a ∪ (c ∩
((a →1 c) ∪ ((b
→1 c) ∩ ((a ∩ b) ∪
((a →1 c) ∩ (b
→1 c)))))))) |