Proof of Theorem oa3-u1lem
| Step | Hyp | Ref
| Expression |
| 1 | | ancom 74 |
. 2
(1 ∩ (c ∪ ((a⊥ →1 c) ∩ (((c
∩ (a⊥ →1
c)) ∪ (1 ∩ (a →1 c))) ∪ (((c
∩ (b⊥ →1
c)) ∪ (1 ∩ (b →1 c))) ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c)))))))) = ((c
∪ ((a⊥ →1
c) ∩ (((c ∩ (a⊥ →1 c)) ∪ (1 ∩ (a →1 c))) ∪ (((c
∩ (b⊥ →1
c)) ∪ (1 ∩ (b →1 c))) ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c))))))) ∩ 1) |
| 2 | | an1 106 |
. 2
((c ∪ ((a⊥ →1 c) ∩ (((c
∩ (a⊥ →1
c)) ∪ (1 ∩ (a →1 c))) ∪ (((c
∩ (b⊥ →1
c)) ∪ (1 ∩ (b →1 c))) ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c))))))) ∩ 1) = (c ∪ ((a⊥ →1 c) ∩ (((c
∩ (a⊥ →1
c)) ∪ (1 ∩ (a →1 c))) ∪ (((c
∩ (b⊥ →1
c)) ∪ (1 ∩ (b →1 c))) ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c))))))) |
| 3 | | lea 160 |
. . . . . . . . 9
(a⊥ ∩ c) ≤ a⊥ |
| 4 | | leo 158 |
. . . . . . . . 9
a⊥ ≤ (a⊥ ∪ (a ∩ c)) |
| 5 | 3, 4 | letr 137 |
. . . . . . . 8
(a⊥ ∩ c) ≤ (a⊥ ∪ (a ∩ c)) |
| 6 | | leor 159 |
. . . . . . . 8
(a ∩ c) ≤ (a⊥ ∪ (a ∩ c)) |
| 7 | 5, 6 | lel2or 170 |
. . . . . . 7
((a⊥ ∩ c) ∪ (a
∩ c)) ≤ (a⊥ ∪ (a ∩ c)) |
| 8 | 7 | df-le2 131 |
. . . . . 6
(((a⊥ ∩
c) ∪ (a ∩ c))
∪ (a⊥ ∪ (a ∩ c))) =
(a⊥ ∪ (a ∩ c)) |
| 9 | | ancom 74 |
. . . . . . . 8
(c ∩ (a⊥ →1 c)) = ((a⊥ →1 c) ∩ c) |
| 10 | | u1lemab 610 |
. . . . . . . 8
((a⊥ →1
c) ∩ c) = ((a⊥ ∩ c) ∪ (a⊥ ⊥ ∩
c)) |
| 11 | | ax-a1 30 |
. . . . . . . . . . 11
a = a⊥
⊥ |
| 12 | 11 | ax-r1 35 |
. . . . . . . . . 10
a⊥
⊥ = a |
| 13 | 12 | ran 78 |
. . . . . . . . 9
(a⊥
⊥ ∩ c) = (a ∩ c) |
| 14 | 13 | lor 70 |
. . . . . . . 8
((a⊥ ∩ c) ∪ (a⊥ ⊥ ∩
c)) = ((a⊥ ∩ c) ∪ (a
∩ c)) |
| 15 | 9, 10, 14 | 3tr 65 |
. . . . . . 7
(c ∩ (a⊥ →1 c)) = ((a⊥ ∩ c) ∪ (a
∩ c)) |
| 16 | | ancom 74 |
. . . . . . . 8
(1 ∩ (a →1
c)) = ((a →1 c) ∩ 1) |
| 17 | | an1 106 |
. . . . . . . 8
((a →1 c) ∩ 1) = (a
→1 c) |
| 18 | | df-i1 44 |
. . . . . . . 8
(a →1 c) = (a⊥ ∪ (a ∩ c)) |
| 19 | 16, 17, 18 | 3tr 65 |
. . . . . . 7
(1 ∩ (a →1
c)) = (a⊥ ∪ (a ∩ c)) |
| 20 | 15, 19 | 2or 72 |
. . . . . 6
((c ∩ (a⊥ →1 c)) ∪ (1 ∩ (a →1 c))) = (((a⊥ ∩ c) ∪ (a
∩ c)) ∪ (a⊥ ∪ (a ∩ c))) |
| 21 | 8, 20, 18 | 3tr1 63 |
. . . . 5
((c ∩ (a⊥ →1 c)) ∪ (1 ∩ (a →1 c))) = (a
→1 c) |
| 22 | | lea 160 |
. . . . . . . . . 10
(b⊥ ∩ c) ≤ b⊥ |
| 23 | | leo 158 |
. . . . . . . . . 10
b⊥ ≤ (b⊥ ∪ (b ∩ c)) |
| 24 | 22, 23 | letr 137 |
. . . . . . . . 9
(b⊥ ∩ c) ≤ (b⊥ ∪ (b ∩ c)) |
| 25 | | leor 159 |
. . . . . . . . 9
(b ∩ c) ≤ (b⊥ ∪ (b ∩ c)) |
| 26 | 24, 25 | lel2or 170 |
. . . . . . . 8
((b⊥ ∩ c) ∪ (b
∩ c)) ≤ (b⊥ ∪ (b ∩ c)) |
| 27 | 26 | df-le2 131 |
. . . . . . 7
(((b⊥ ∩
c) ∪ (b ∩ c))
∪ (b⊥ ∪ (b ∩ c))) =
(b⊥ ∪ (b ∩ c)) |
| 28 | | ancom 74 |
. . . . . . . . 9
(c ∩ (b⊥ →1 c)) = ((b⊥ →1 c) ∩ c) |
| 29 | | u1lemab 610 |
. . . . . . . . 9
((b⊥ →1
c) ∩ c) = ((b⊥ ∩ c) ∪ (b⊥ ⊥ ∩
c)) |
| 30 | | ax-a1 30 |
. . . . . . . . . . . 12
b = b⊥
⊥ |
| 31 | 30 | ax-r1 35 |
. . . . . . . . . . 11
b⊥
⊥ = b |
| 32 | 31 | ran 78 |
. . . . . . . . . 10
(b⊥
⊥ ∩ c) = (b ∩ c) |
| 33 | 32 | lor 70 |
. . . . . . . . 9
((b⊥ ∩ c) ∪ (b⊥ ⊥ ∩
c)) = ((b⊥ ∩ c) ∪ (b
∩ c)) |
| 34 | 28, 29, 33 | 3tr 65 |
. . . . . . . 8
(c ∩ (b⊥ →1 c)) = ((b⊥ ∩ c) ∪ (b
∩ c)) |
| 35 | | ancom 74 |
. . . . . . . . 9
(1 ∩ (b →1
c)) = ((b →1 c) ∩ 1) |
| 36 | | an1 106 |
. . . . . . . . 9
((b →1 c) ∩ 1) = (b
→1 c) |
| 37 | | df-i1 44 |
. . . . . . . . 9
(b →1 c) = (b⊥ ∪ (b ∩ c)) |
| 38 | 35, 36, 37 | 3tr 65 |
. . . . . . . 8
(1 ∩ (b →1
c)) = (b⊥ ∪ (b ∩ c)) |
| 39 | 34, 38 | 2or 72 |
. . . . . . 7
((c ∩ (b⊥ →1 c)) ∪ (1 ∩ (b →1 c))) = (((b⊥ ∩ c) ∪ (b
∩ c)) ∪ (b⊥ ∪ (b ∩ c))) |
| 40 | 27, 39, 37 | 3tr1 63 |
. . . . . 6
((c ∩ (b⊥ →1 c)) ∪ (1 ∩ (b →1 c))) = (b
→1 c) |
| 41 | | ax-a2 31 |
. . . . . 6
(((a⊥ →1
c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c))) = (((a
→1 c) ∩ (b →1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c))) |
| 42 | 40, 41 | 2an 79 |
. . . . 5
(((c ∩ (b⊥ →1 c)) ∪ (1 ∩ (b →1 c))) ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c)))) = ((b
→1 c) ∩ (((a →1 c) ∩ (b
→1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))) |
| 43 | 21, 42 | 2or 72 |
. . . 4
(((c ∩ (a⊥ →1 c)) ∪ (1 ∩ (a →1 c))) ∪ (((c
∩ (b⊥ →1
c)) ∪ (1 ∩ (b →1 c))) ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c))))) = ((a
→1 c) ∪ ((b →1 c) ∩ (((a
→1 c) ∩ (b →1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c))))) |
| 44 | 43 | lan 77 |
. . 3
((a⊥ →1
c) ∩ (((c ∩ (a⊥ →1 c)) ∪ (1 ∩ (a →1 c))) ∪ (((c
∩ (b⊥ →1
c)) ∪ (1 ∩ (b →1 c))) ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c)))))) = ((a⊥ →1 c) ∩ ((a
→1 c) ∪ ((b →1 c) ∩ (((a
→1 c) ∩ (b →1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))))) |
| 45 | 44 | lor 70 |
. 2
(c ∪ ((a⊥ →1 c) ∩ (((c
∩ (a⊥ →1
c)) ∪ (1 ∩ (a →1 c))) ∪ (((c
∩ (b⊥ →1
c)) ∪ (1 ∩ (b →1 c))) ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c))))))) = (c
∪ ((a⊥ →1
c) ∩ ((a →1 c) ∪ ((b
→1 c) ∩ (((a →1 c) ∩ (b
→1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c))))))) |
| 46 | 1, 2, 45 | 3tr 65 |
1
(1 ∩ (c ∪ ((a⊥ →1 c) ∩ (((c
∩ (a⊥ →1
c)) ∪ (1 ∩ (a →1 c))) ∪ (((c
∩ (b⊥ →1
c)) ∪ (1 ∩ (b →1 c))) ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c)))))))) = (c
∪ ((a⊥ →1
c) ∩ ((a →1 c) ∪ ((b
→1 c) ∩ (((a →1 c) ∩ (b
→1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c))))))) |