| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oal1 | GIF version | ||
| Description: Orthoarguesian law - →1 version derived from →1 version. (Contributed by NM, 25-Nov-1998.) |
| Ref | Expression |
|---|---|
| oal1 | ((a →1 c) ∩ ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c)))) ≤ (b →1 c) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oal2 999 | . 2 ((c⊥ →2 a⊥ ) ∩ ((a⊥ ∪ b⊥ )⊥ ∪ ((c⊥ →2 a⊥ ) ∩ (c⊥ →2 b⊥ )))) ≤ (c⊥ →2 b⊥ ) | |
| 2 | i1i2 266 | . . 3 (a →1 c) = (c⊥ →2 a⊥ ) | |
| 3 | df-a 40 | . . . 4 (a ∩ b) = (a⊥ ∪ b⊥ )⊥ | |
| 4 | i1i2 266 | . . . . 5 (b →1 c) = (c⊥ →2 b⊥ ) | |
| 5 | 2, 4 | 2an 79 | . . . 4 ((a →1 c) ∩ (b →1 c)) = ((c⊥ →2 a⊥ ) ∩ (c⊥ →2 b⊥ )) |
| 6 | 3, 5 | 2or 72 | . . 3 ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c))) = ((a⊥ ∪ b⊥ )⊥ ∪ ((c⊥ →2 a⊥ ) ∩ (c⊥ →2 b⊥ ))) |
| 7 | 2, 6 | 2an 79 | . 2 ((a →1 c) ∩ ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c)))) = ((c⊥ →2 a⊥ ) ∩ ((a⊥ ∪ b⊥ )⊥ ∪ ((c⊥ →2 a⊥ ) ∩ (c⊥ →2 b⊥ )))) |
| 8 | 1, 7, 4 | le3tr1 140 | 1 ((a →1 c) ∩ ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c)))) ≤ (b →1 c) |
| Colors of variables: term |
| Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 →2 wi2 13 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-3oa 998 |
| This theorem depends on definitions: df-a 40 df-i1 44 df-i2 45 df-le1 130 df-le2 131 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |