Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > oal2 | GIF version |
Description: Orthoarguesian law - →2 version. (Contributed by NM, 20-Jul-1999.) |
Ref | Expression |
---|---|
oal2 | ((a →2 b) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))) ≤ (a →2 c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-3oa 998 | . 2 ((b⊥ →1 a⊥ ) ∩ ((b⊥ ∩ c⊥ ) ∪ ((b⊥ →1 a⊥ ) ∩ (c⊥ →1 a⊥ )))) ≤ (c⊥ →1 a⊥ ) | |
2 | i2i1 267 | . . 3 (a →2 b) = (b⊥ →1 a⊥ ) | |
3 | anor3 90 | . . . . 5 (b⊥ ∩ c⊥ ) = (b ∪ c)⊥ | |
4 | 3 | ax-r1 35 | . . . 4 (b ∪ c)⊥ = (b⊥ ∩ c⊥ ) |
5 | i2i1 267 | . . . . 5 (a →2 c) = (c⊥ →1 a⊥ ) | |
6 | 2, 5 | 2an 79 | . . . 4 ((a →2 b) ∩ (a →2 c)) = ((b⊥ →1 a⊥ ) ∩ (c⊥ →1 a⊥ )) |
7 | 4, 6 | 2or 72 | . . 3 ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c))) = ((b⊥ ∩ c⊥ ) ∪ ((b⊥ →1 a⊥ ) ∩ (c⊥ →1 a⊥ ))) |
8 | 2, 7 | 2an 79 | . 2 ((a →2 b) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))) = ((b⊥ →1 a⊥ ) ∩ ((b⊥ ∩ c⊥ ) ∪ ((b⊥ →1 a⊥ ) ∩ (c⊥ →1 a⊥ )))) |
9 | 1, 8, 5 | le3tr1 140 | 1 ((a →2 b) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))) ≤ (a →2 c) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-3oa 998 |
This theorem depends on definitions: df-a 40 df-i1 44 df-i2 45 df-le1 130 df-le2 131 |
This theorem is referenced by: oal1 1000 oaliii 1001 oagen2 1016 mloa 1018 oadistc0 1021 |
Copyright terms: Public domain | W3C validator |