Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > oml3 | GIF version |
Description: Orthomodular law. Kalmbach 83 p. 22. (Contributed by NM, 27-Aug-1997.) |
Ref | Expression |
---|---|
oml3.1 | a ≤ b |
oml3.2 | (b ∩ a⊥ ) = 0 |
Ref | Expression |
---|---|
oml3 | a = b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oml3.2 | . . . . 5 (b ∩ a⊥ ) = 0 | |
2 | 1 | ax-r1 35 | . . . 4 0 = (b ∩ a⊥ ) |
3 | ancom 74 | . . . 4 (b ∩ a⊥ ) = (a⊥ ∩ b) | |
4 | 2, 3 | ax-r2 36 | . . 3 0 = (a⊥ ∩ b) |
5 | 4 | lor 70 | . 2 (a ∪ 0) = (a ∪ (a⊥ ∩ b)) |
6 | or0 102 | . 2 (a ∪ 0) = a | |
7 | oml3.1 | . . 3 a ≤ b | |
8 | 7 | oml2 451 | . 2 (a ∪ (a⊥ ∩ b)) = b |
9 | 5, 6, 8 | 3tr2 64 | 1 a = b |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 0wf 9 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le2 131 |
This theorem is referenced by: fh1 469 fh2 470 mh 879 |
Copyright terms: Public domain | W3C validator |