Proof of Theorem omla
Step | Hyp | Ref
| Expression |
1 | | df-a 40 |
. . . . . . 7
(a ∩ (a⊥ ∪ b⊥ )) = (a⊥ ∪ (a⊥ ∪ b⊥ )⊥
)⊥ |
2 | | df-a 40 |
. . . . . . . . . 10
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
3 | 2 | ax-r1 35 |
. . . . . . . . 9
(a⊥ ∪ b⊥ )⊥ = (a ∩ b) |
4 | 3 | lor 70 |
. . . . . . . 8
(a⊥ ∪ (a⊥ ∪ b⊥ )⊥ ) =
(a⊥ ∪ (a ∩ b)) |
5 | 4 | ax-r4 37 |
. . . . . . 7
(a⊥ ∪ (a⊥ ∪ b⊥ )⊥
)⊥ = (a⊥
∪ (a ∩ b))⊥ |
6 | 1, 5 | ax-r2 36 |
. . . . . 6
(a ∩ (a⊥ ∪ b⊥ )) = (a⊥ ∪ (a ∩ b))⊥ |
7 | 6 | ax-r1 35 |
. . . . 5
(a⊥ ∪ (a ∩ b))⊥ = (a ∩ (a⊥ ∪ b⊥ )) |
8 | 7 | lor 70 |
. . . 4
(a⊥ ∪ (a⊥ ∪ (a ∩ b))⊥ ) = (a⊥ ∪ (a ∩ (a⊥ ∪ b⊥ ))) |
9 | | omln 446 |
. . . 4
(a⊥ ∪ (a ∩ (a⊥ ∪ b⊥ ))) = (a⊥ ∪ b⊥ ) |
10 | 8, 9 | ax-r2 36 |
. . 3
(a⊥ ∪ (a⊥ ∪ (a ∩ b))⊥ ) = (a⊥ ∪ b⊥ ) |
11 | | df-a 40 |
. . . 4
(a ∩ (a⊥ ∪ (a ∩ b))) =
(a⊥ ∪ (a⊥ ∪ (a ∩ b))⊥
)⊥ |
12 | 11 | con2 67 |
. . 3
(a ∩ (a⊥ ∪ (a ∩ b)))⊥ = (a⊥ ∪ (a⊥ ∪ (a ∩ b))⊥ ) |
13 | 2 | con2 67 |
. . 3
(a ∩ b)⊥ = (a⊥ ∪ b⊥ ) |
14 | 10, 12, 13 | 3tr1 63 |
. 2
(a ∩ (a⊥ ∪ (a ∩ b)))⊥ = (a ∩ b)⊥ |
15 | 14 | con1 66 |
1
(a ∩ (a⊥ ∪ (a ∩ b))) =
(a ∩ b) |