Proof of Theorem gsth2
Step | Hyp | Ref
| Expression |
1 | | gsth2.1 |
. . . . 5
b C c |
2 | 1 | comcom 453 |
. . . 4
c C b |
3 | | ancom 74 |
. . . . . . . . 9
(b ∩ (b⊥ ∪ a⊥ )) = ((b⊥ ∪ a⊥ ) ∩ b) |
4 | | ax-a2 31 |
. . . . . . . . . 10
(b⊥ ∪ a⊥ ) = (a⊥ ∪ b⊥ ) |
5 | 4 | ran 78 |
. . . . . . . . 9
((b⊥ ∪ a⊥ ) ∩ b) = ((a⊥ ∪ b⊥ ) ∩ b) |
6 | 3, 5 | ax-r2 36 |
. . . . . . . 8
(b ∩ (b⊥ ∪ a⊥ )) = ((a⊥ ∪ b⊥ ) ∩ b) |
7 | | comor2 462 |
. . . . . . . . . 10
(a⊥ ∪ b⊥ ) C b⊥ |
8 | 7 | comcom7 460 |
. . . . . . . . 9
(a⊥ ∪ b⊥ ) C b |
9 | | gsth2.2 |
. . . . . . . . . . . . 13
a C (b ∩ c) |
10 | 9 | comcom 453 |
. . . . . . . . . . . 12
(b ∩ c) C a |
11 | 10 | comcom2 183 |
. . . . . . . . . . 11
(b ∩ c) C a⊥ |
12 | | coman1 185 |
. . . . . . . . . . . 12
(b ∩ c) C b |
13 | 12 | comcom2 183 |
. . . . . . . . . . 11
(b ∩ c) C b⊥ |
14 | 11, 13 | com2or 483 |
. . . . . . . . . 10
(b ∩ c) C (a⊥ ∪ b⊥ ) |
15 | 14 | comcom 453 |
. . . . . . . . 9
(a⊥ ∪ b⊥ ) C (b ∩ c) |
16 | 8, 1, 15 | gsth 489 |
. . . . . . . 8
((a⊥ ∪ b⊥ ) ∩ b) C c |
17 | 6, 16 | bctr 181 |
. . . . . . 7
(b ∩ (b⊥ ∪ a⊥ )) C c |
18 | 17 | comcom 453 |
. . . . . 6
c C (b ∩ (b⊥ ∪ a⊥ )) |
19 | | df-a 40 |
. . . . . . 7
(b ∩ (b⊥ ∪ a⊥ )) = (b⊥ ∪ (b⊥ ∪ a⊥ )⊥
)⊥ |
20 | | df-a 40 |
. . . . . . . . . 10
(b ∩ a) = (b⊥ ∪ a⊥
)⊥ |
21 | 20 | lor 70 |
. . . . . . . . 9
(b⊥ ∪ (b ∩ a)) =
(b⊥ ∪ (b⊥ ∪ a⊥ )⊥
) |
22 | 21 | ax-r4 37 |
. . . . . . . 8
(b⊥ ∪ (b ∩ a))⊥ = (b⊥ ∪ (b⊥ ∪ a⊥ )⊥
)⊥ |
23 | 22 | ax-r1 35 |
. . . . . . 7
(b⊥ ∪ (b⊥ ∪ a⊥ )⊥
)⊥ = (b⊥
∪ (b ∩ a))⊥ |
24 | 19, 23 | ax-r2 36 |
. . . . . 6
(b ∩ (b⊥ ∪ a⊥ )) = (b⊥ ∪ (b ∩ a))⊥ |
25 | 18, 24 | cbtr 182 |
. . . . 5
c C (b⊥ ∪ (b ∩ a))⊥ |
26 | 25 | comcom7 460 |
. . . 4
c C (b⊥ ∪ (b ∩ a)) |
27 | 2, 26 | com2an 484 |
. . 3
c C (b ∩ (b⊥ ∪ (b ∩ a))) |
28 | | omla 447 |
. . . 4
(b ∩ (b⊥ ∪ (b ∩ a))) =
(b ∩ a) |
29 | | ancom 74 |
. . . 4
(b ∩ a) = (a ∩
b) |
30 | 28, 29 | ax-r2 36 |
. . 3
(b ∩ (b⊥ ∪ (b ∩ a))) =
(a ∩ b) |
31 | 27, 30 | cbtr 182 |
. 2
c C (a ∩ b) |
32 | 31 | comcom 453 |
1
(a ∩ b) C c |