Proof of Theorem lem4.6.2e1
Step | Hyp | Ref
| Expression |
1 | | df-i1 44 |
. . 3
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
2 | | df-i1 44 |
. . 3
(a⊥ →1
b) = (a⊥ ⊥ ∪
(a⊥ ∩ b)) |
3 | 1, 2 | 2an 79 |
. 2
((a →1 b) ∩ (a⊥ →1 b)) = ((a⊥ ∪ (a ∩ b))
∩ (a⊥
⊥ ∪ (a⊥ ∩ b))) |
4 | | ax-a1 30 |
. . . . . 6
a = a⊥
⊥ |
5 | 4 | ax-r1 35 |
. . . . 5
a⊥
⊥ = a |
6 | 5 | ax-r5 38 |
. . . 4
(a⊥
⊥ ∪ (a⊥ ∩ b)) = (a ∪
(a⊥ ∩ b)) |
7 | 6 | lan 77 |
. . 3
((a⊥ ∪
(a ∩ b)) ∩ (a⊥ ⊥ ∪
(a⊥ ∩ b))) = ((a⊥ ∪ (a ∩ b))
∩ (a ∪ (a⊥ ∩ b))) |
8 | | comorr 184 |
. . . . . 6
a⊥ C
(a⊥ ∪ (a ∩ b)) |
9 | 8 | comcom6 459 |
. . . . 5
a C (a⊥ ∪ (a ∩ b)) |
10 | 9 | comcom 453 |
. . . 4
(a⊥ ∪ (a ∩ b)) C
a |
11 | | leao1 162 |
. . . . . 6
(a⊥ ∩ b) ≤ (a⊥ ∪ (a ∩ b)) |
12 | 11 | lecom 180 |
. . . . 5
(a⊥ ∩ b) C (a⊥ ∪ (a ∩ b)) |
13 | 12 | comcom 453 |
. . . 4
(a⊥ ∪ (a ∩ b)) C
(a⊥ ∩ b) |
14 | 10, 13 | fh1 469 |
. . 3
((a⊥ ∪
(a ∩ b)) ∩ (a
∪ (a⊥ ∩ b))) = (((a⊥ ∪ (a ∩ b))
∩ a) ∪ ((a⊥ ∪ (a ∩ b))
∩ (a⊥ ∩ b))) |
15 | | ancom 74 |
. . . . 5
((a⊥ ∪
(a ∩ b)) ∩ a) =
(a ∩ (a⊥ ∪ (a ∩ b))) |
16 | 15 | ax-r5 38 |
. . . 4
(((a⊥ ∪
(a ∩ b)) ∩ a)
∪ ((a⊥ ∪ (a ∩ b))
∩ (a⊥ ∩ b))) = ((a ∩
(a⊥ ∪ (a ∩ b)))
∪ ((a⊥ ∪ (a ∩ b))
∩ (a⊥ ∩ b))) |
17 | | omla 447 |
. . . . 5
(a ∩ (a⊥ ∪ (a ∩ b))) =
(a ∩ b) |
18 | 17 | ax-r5 38 |
. . . 4
((a ∩ (a⊥ ∪ (a ∩ b)))
∪ ((a⊥ ∪ (a ∩ b))
∩ (a⊥ ∩ b))) = ((a ∩
b) ∪ ((a⊥ ∪ (a ∩ b))
∩ (a⊥ ∩ b))) |
19 | | ancom 74 |
. . . . . 6
((a⊥ ∪
(a ∩ b)) ∩ (a⊥ ∩ b)) = ((a⊥ ∩ b) ∩ (a⊥ ∪ (a ∩ b))) |
20 | 19 | lor 70 |
. . . . 5
((a ∩ b) ∪ ((a⊥ ∪ (a ∩ b))
∩ (a⊥ ∩ b))) = ((a ∩
b) ∪ ((a⊥ ∩ b) ∩ (a⊥ ∪ (a ∩ b)))) |
21 | | coman1 185 |
. . . . . . 7
(a⊥ ∩ b) C a⊥ |
22 | 21 | comcom7 460 |
. . . . . . . 8
(a⊥ ∩ b) C a |
23 | | coman2 186 |
. . . . . . . 8
(a⊥ ∩ b) C b |
24 | 22, 23 | com2an 484 |
. . . . . . 7
(a⊥ ∩ b) C (a
∩ b) |
25 | 21, 24 | fh1 469 |
. . . . . 6
((a⊥ ∩ b) ∩ (a⊥ ∪ (a ∩ b))) =
(((a⊥ ∩ b) ∩ a⊥ ) ∪ ((a⊥ ∩ b) ∩ (a
∩ b))) |
26 | 25 | lor 70 |
. . . . 5
((a ∩ b) ∪ ((a⊥ ∩ b) ∩ (a⊥ ∪ (a ∩ b)))) =
((a ∩ b) ∪ (((a⊥ ∩ b) ∩ a⊥ ) ∪ ((a⊥ ∩ b) ∩ (a
∩ b)))) |
27 | | ancom 74 |
. . . . . . . . 9
(a⊥ ∩ b) = (b ∩
a⊥ ) |
28 | 27 | ran 78 |
. . . . . . . 8
((a⊥ ∩ b) ∩ a⊥ ) = ((b ∩ a⊥ ) ∩ a⊥ ) |
29 | 28 | ax-r5 38 |
. . . . . . 7
(((a⊥ ∩
b) ∩ a⊥ ) ∪ ((a⊥ ∩ b) ∩ (a
∩ b))) = (((b ∩ a⊥ ) ∩ a⊥ ) ∪ ((a⊥ ∩ b) ∩ (a
∩ b))) |
30 | 29 | lor 70 |
. . . . . 6
((a ∩ b) ∪ (((a⊥ ∩ b) ∩ a⊥ ) ∪ ((a⊥ ∩ b) ∩ (a
∩ b)))) = ((a ∩ b) ∪
(((b ∩ a⊥ ) ∩ a⊥ ) ∪ ((a⊥ ∩ b) ∩ (a
∩ b)))) |
31 | | anass 76 |
. . . . . . . 8
((b ∩ a⊥ ) ∩ a⊥ ) = (b ∩ (a⊥ ∩ a⊥ )) |
32 | 31 | ax-r5 38 |
. . . . . . 7
(((b ∩ a⊥ ) ∩ a⊥ ) ∪ ((a⊥ ∩ b) ∩ (a
∩ b))) = ((b ∩ (a⊥ ∩ a⊥ )) ∪ ((a⊥ ∩ b) ∩ (a
∩ b))) |
33 | 32 | lor 70 |
. . . . . 6
((a ∩ b) ∪ (((b
∩ a⊥ ) ∩ a⊥ ) ∪ ((a⊥ ∩ b) ∩ (a
∩ b)))) = ((a ∩ b) ∪
((b ∩ (a⊥ ∩ a⊥ )) ∪ ((a⊥ ∩ b) ∩ (a
∩ b)))) |
34 | | anidm 111 |
. . . . . . . . . 10
(a⊥ ∩ a⊥ ) = a⊥ |
35 | 34 | lan 77 |
. . . . . . . . 9
(b ∩ (a⊥ ∩ a⊥ )) = (b ∩ a⊥ ) |
36 | 35 | ax-r5 38 |
. . . . . . . 8
((b ∩ (a⊥ ∩ a⊥ )) ∪ ((a⊥ ∩ b) ∩ (a
∩ b))) = ((b ∩ a⊥ ) ∪ ((a⊥ ∩ b) ∩ (a
∩ b))) |
37 | 36 | lor 70 |
. . . . . . 7
((a ∩ b) ∪ ((b
∩ (a⊥ ∩ a⊥ )) ∪ ((a⊥ ∩ b) ∩ (a
∩ b)))) = ((a ∩ b) ∪
((b ∩ a⊥ ) ∪ ((a⊥ ∩ b) ∩ (a
∩ b)))) |
38 | | ancom 74 |
. . . . . . . . 9
(b ∩ a⊥ ) = (a⊥ ∩ b) |
39 | 38 | ax-r5 38 |
. . . . . . . 8
((b ∩ a⊥ ) ∪ ((a⊥ ∩ b) ∩ (a
∩ b))) = ((a⊥ ∩ b) ∪ ((a⊥ ∩ b) ∩ (a
∩ b))) |
40 | 39 | lor 70 |
. . . . . . 7
((a ∩ b) ∪ ((b
∩ a⊥ ) ∪
((a⊥ ∩ b) ∩ (a
∩ b)))) = ((a ∩ b) ∪
((a⊥ ∩ b) ∪ ((a⊥ ∩ b) ∩ (a
∩ b)))) |
41 | | orabs 120 |
. . . . . . . . 9
((a⊥ ∩ b) ∪ ((a⊥ ∩ b) ∩ (a
∩ b))) = (a⊥ ∩ b) |
42 | 41 | lor 70 |
. . . . . . . 8
((a ∩ b) ∪ ((a⊥ ∩ b) ∪ ((a⊥ ∩ b) ∩ (a
∩ b)))) = ((a ∩ b) ∪
(a⊥ ∩ b)) |
43 | | coman1 185 |
. . . . . . . . . 10
(a ∩ b) C a |
44 | 43 | comcom2 183 |
. . . . . . . . 9
(a ∩ b) C a⊥ |
45 | | coman2 186 |
. . . . . . . . 9
(a ∩ b) C b |
46 | 44, 45 | fh3 471 |
. . . . . . . 8
((a ∩ b) ∪ (a⊥ ∩ b)) = (((a ∩
b) ∪ a⊥ ) ∩ ((a ∩ b) ∪
b)) |
47 | | ax-a2 31 |
. . . . . . . . 9
((a ∩ b) ∪ a⊥ ) = (a⊥ ∪ (a ∩ b)) |
48 | | lear 161 |
. . . . . . . . . 10
(a ∩ b) ≤ b |
49 | 48 | df-le2 131 |
. . . . . . . . 9
((a ∩ b) ∪ b) =
b |
50 | 47, 49 | 2an 79 |
. . . . . . . 8
(((a ∩ b) ∪ a⊥ ) ∩ ((a ∩ b) ∪
b)) = ((a⊥ ∪ (a ∩ b))
∩ b) |
51 | 42, 46, 50 | 3tr 65 |
. . . . . . 7
((a ∩ b) ∪ ((a⊥ ∩ b) ∪ ((a⊥ ∩ b) ∩ (a
∩ b)))) = ((a⊥ ∪ (a ∩ b))
∩ b) |
52 | 37, 40, 51 | 3tr 65 |
. . . . . 6
((a ∩ b) ∪ ((b
∩ (a⊥ ∩ a⊥ )) ∪ ((a⊥ ∩ b) ∩ (a
∩ b)))) = ((a⊥ ∪ (a ∩ b))
∩ b) |
53 | 30, 33, 52 | 3tr 65 |
. . . . 5
((a ∩ b) ∪ (((a⊥ ∩ b) ∩ a⊥ ) ∪ ((a⊥ ∩ b) ∩ (a
∩ b)))) = ((a⊥ ∪ (a ∩ b))
∩ b) |
54 | 20, 26, 53 | 3tr 65 |
. . . 4
((a ∩ b) ∪ ((a⊥ ∪ (a ∩ b))
∩ (a⊥ ∩ b))) = ((a⊥ ∪ (a ∩ b))
∩ b) |
55 | 16, 18, 54 | 3tr 65 |
. . 3
(((a⊥ ∪
(a ∩ b)) ∩ a)
∪ ((a⊥ ∪ (a ∩ b))
∩ (a⊥ ∩ b))) = ((a⊥ ∪ (a ∩ b))
∩ b) |
56 | 7, 14, 55 | 3tr 65 |
. 2
((a⊥ ∪
(a ∩ b)) ∩ (a⊥ ⊥ ∪
(a⊥ ∩ b))) = ((a⊥ ∪ (a ∩ b))
∩ b) |
57 | 1 | ax-r1 35 |
. . 3
(a⊥ ∪ (a ∩ b)) =
(a →1 b) |
58 | 57 | ran 78 |
. 2
((a⊥ ∪
(a ∩ b)) ∩ b) =
((a →1 b) ∩ b) |
59 | 3, 56, 58 | 3tr 65 |
1
((a →1 b) ∩ (a⊥ →1 b)) = ((a
→1 b) ∩ b) |