Proof of Theorem orbi
Step | Hyp | Ref
| Expression |
1 | | dfb 94 |
. . 3
(a ≡ c) = ((a ∩
c) ∪ (a⊥ ∩ c⊥ )) |
2 | | dfb 94 |
. . 3
(b ≡ c) = ((b ∩
c) ∪ (b⊥ ∩ c⊥ )) |
3 | 1, 2 | 2or 72 |
. 2
((a ≡ c) ∪ (b
≡ c)) = (((a ∩ c) ∪
(a⊥ ∩ c⊥ )) ∪ ((b ∩ c) ∪
(b⊥ ∩ c⊥ ))) |
4 | | ax-a2 31 |
. 2
(((a ∩ c) ∪ (a⊥ ∩ c⊥ )) ∪ ((b ∩ c) ∪
(b⊥ ∩ c⊥ ))) = (((b ∩ c) ∪
(b⊥ ∩ c⊥ )) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) |
5 | | ax-a3 32 |
. . 3
(((b ∩ c) ∪ (b⊥ ∩ c⊥ )) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) = ((b ∩ c) ∪
((b⊥ ∩ c⊥ ) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ )))) |
6 | | ancom 74 |
. . . . . . . 8
(a ∩ c) = (c ∩
a) |
7 | 6 | lor 70 |
. . . . . . 7
((b⊥ ∩ c⊥ ) ∪ (a ∩ c)) =
((b⊥ ∩ c⊥ ) ∪ (c ∩ a)) |
8 | | imp3 841 |
. . . . . . . 8
((b →2 c) ∩ (c
→1 a)) = ((b⊥ ∩ c⊥ ) ∪ (c ∩ a)) |
9 | 8 | ax-r1 35 |
. . . . . . 7
((b⊥ ∩ c⊥ ) ∪ (c ∩ a)) =
((b →2 c) ∩ (c
→1 a)) |
10 | 7, 9 | ax-r2 36 |
. . . . . 6
((b⊥ ∩ c⊥ ) ∪ (a ∩ c)) =
((b →2 c) ∩ (c
→1 a)) |
11 | 10 | ax-r5 38 |
. . . . 5
(((b⊥ ∩
c⊥ ) ∪ (a ∩ c))
∪ (a⊥ ∩ c⊥ )) = (((b →2 c) ∩ (c
→1 a)) ∪ (a⊥ ∩ c⊥ )) |
12 | | ax-a3 32 |
. . . . 5
(((b⊥ ∩
c⊥ ) ∪ (a ∩ c))
∪ (a⊥ ∩ c⊥ )) = ((b⊥ ∩ c⊥ ) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) |
13 | | df-i1 44 |
. . . . . . . 8
(c →1 a) = (c⊥ ∪ (c ∩ a)) |
14 | | lear 161 |
. . . . . . . . . . 11
(a⊥ ∩ c⊥ ) ≤ c⊥ |
15 | | leo 158 |
. . . . . . . . . . 11
c⊥ ≤ (c⊥ ∪ (c ∩ a)) |
16 | 14, 15 | letr 137 |
. . . . . . . . . 10
(a⊥ ∩ c⊥ ) ≤ (c⊥ ∪ (c ∩ a)) |
17 | 16 | lecom 180 |
. . . . . . . . 9
(a⊥ ∩ c⊥ ) C (c⊥ ∪ (c ∩ a)) |
18 | 17 | comcom 453 |
. . . . . . . 8
(c⊥ ∪ (c ∩ a)) C
(a⊥ ∩ c⊥ ) |
19 | 13, 18 | bctr 181 |
. . . . . . 7
(c →1 a) C (a⊥ ∩ c⊥ ) |
20 | | comi12 707 |
. . . . . . 7
(c →1 a) C (b
→2 c) |
21 | 19, 20 | fh4rc 482 |
. . . . . 6
(((b →2 c) ∩ (c
→1 a)) ∪ (a⊥ ∩ c⊥ )) = (((b →2 c) ∪ (a⊥ ∩ c⊥ )) ∩ ((c →1 a) ∪ (a⊥ ∩ c⊥ ))) |
22 | 13 | ax-r5 38 |
. . . . . . . 8
((c →1 a) ∪ (a⊥ ∩ c⊥ )) = ((c⊥ ∪ (c ∩ a))
∪ (a⊥ ∩ c⊥ )) |
23 | | ax-a2 31 |
. . . . . . . 8
((c⊥ ∪
(c ∩ a)) ∪ (a⊥ ∩ c⊥ )) = ((a⊥ ∩ c⊥ ) ∪ (c⊥ ∪ (c ∩ a))) |
24 | 16 | df-le2 131 |
. . . . . . . 8
((a⊥ ∩ c⊥ ) ∪ (c⊥ ∪ (c ∩ a))) =
(c⊥ ∪ (c ∩ a)) |
25 | 22, 23, 24 | 3tr 65 |
. . . . . . 7
((c →1 a) ∪ (a⊥ ∩ c⊥ )) = (c⊥ ∪ (c ∩ a)) |
26 | 25 | lan 77 |
. . . . . 6
(((b →2 c) ∪ (a⊥ ∩ c⊥ )) ∩ ((c →1 a) ∪ (a⊥ ∩ c⊥ ))) = (((b →2 c) ∪ (a⊥ ∩ c⊥ )) ∩ (c⊥ ∪ (c ∩ a))) |
27 | 21, 26 | ax-r2 36 |
. . . . 5
(((b →2 c) ∩ (c
→1 a)) ∪ (a⊥ ∩ c⊥ )) = (((b →2 c) ∪ (a⊥ ∩ c⊥ )) ∩ (c⊥ ∪ (c ∩ a))) |
28 | 11, 12, 27 | 3tr2 64 |
. . . 4
((b⊥ ∩ c⊥ ) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) = (((b →2 c) ∪ (a⊥ ∩ c⊥ )) ∩ (c⊥ ∪ (c ∩ a))) |
29 | 28 | lor 70 |
. . 3
((b ∩ c) ∪ ((b⊥ ∩ c⊥ ) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ )))) = ((b ∩ c) ∪
(((b →2 c) ∪ (a⊥ ∩ c⊥ )) ∩ (c⊥ ∪ (c ∩ a)))) |
30 | | df-i2 45 |
. . . . . . . 8
(b →2 c) = (c ∪
(b⊥ ∩ c⊥ )) |
31 | 30 | ax-r5 38 |
. . . . . . 7
((b →2 c) ∪ (a⊥ ∩ c⊥ )) = ((c ∪ (b⊥ ∩ c⊥ )) ∪ (a⊥ ∩ c⊥ )) |
32 | | ax-a3 32 |
. . . . . . 7
((c ∪ (b⊥ ∩ c⊥ )) ∪ (a⊥ ∩ c⊥ )) = (c ∪ ((b⊥ ∩ c⊥ ) ∪ (a⊥ ∩ c⊥ ))) |
33 | 31, 32 | ax-r2 36 |
. . . . . 6
((b →2 c) ∪ (a⊥ ∩ c⊥ )) = (c ∪ ((b⊥ ∩ c⊥ ) ∪ (a⊥ ∩ c⊥ ))) |
34 | | lear 161 |
. . . . . . . . 9
(b ∩ c) ≤ c |
35 | | leo 158 |
. . . . . . . . 9
c ≤ (c ∪ ((b⊥ ∩ c⊥ ) ∪ (a⊥ ∩ c⊥ ))) |
36 | 34, 35 | letr 137 |
. . . . . . . 8
(b ∩ c) ≤ (c ∪
((b⊥ ∩ c⊥ ) ∪ (a⊥ ∩ c⊥ ))) |
37 | 36 | lecom 180 |
. . . . . . 7
(b ∩ c) C (c
∪ ((b⊥ ∩ c⊥ ) ∪ (a⊥ ∩ c⊥ ))) |
38 | 37 | comcom 453 |
. . . . . 6
(c ∪ ((b⊥ ∩ c⊥ ) ∪ (a⊥ ∩ c⊥ ))) C (b ∩ c) |
39 | 33, 38 | bctr 181 |
. . . . 5
((b →2 c) ∪ (a⊥ ∩ c⊥ )) C (b ∩ c) |
40 | | lea 160 |
. . . . . . . . . . 11
(c ∩ (c ∩ a)⊥ ) ≤ c |
41 | 40, 35 | letr 137 |
. . . . . . . . . 10
(c ∩ (c ∩ a)⊥ ) ≤ (c ∪ ((b⊥ ∩ c⊥ ) ∪ (a⊥ ∩ c⊥ ))) |
42 | 41 | lecom 180 |
. . . . . . . . 9
(c ∩ (c ∩ a)⊥ ) C (c ∪ ((b⊥ ∩ c⊥ ) ∪ (a⊥ ∩ c⊥ ))) |
43 | 42 | comcom 453 |
. . . . . . . 8
(c ∪ ((b⊥ ∩ c⊥ ) ∪ (a⊥ ∩ c⊥ ))) C (c ∩ (c ∩
a)⊥ ) |
44 | | anor1 88 |
. . . . . . . 8
(c ∩ (c ∩ a)⊥ ) = (c⊥ ∪ (c ∩ a))⊥ |
45 | 43, 44 | cbtr 182 |
. . . . . . 7
(c ∪ ((b⊥ ∩ c⊥ ) ∪ (a⊥ ∩ c⊥ ))) C (c⊥ ∪ (c ∩ a))⊥ |
46 | 45 | comcom7 460 |
. . . . . 6
(c ∪ ((b⊥ ∩ c⊥ ) ∪ (a⊥ ∩ c⊥ ))) C (c⊥ ∪ (c ∩ a)) |
47 | 33, 46 | bctr 181 |
. . . . 5
((b →2 c) ∪ (a⊥ ∩ c⊥ )) C (c⊥ ∪ (c ∩ a)) |
48 | 39, 47 | fh4 472 |
. . . 4
((b ∩ c) ∪ (((b
→2 c) ∪ (a⊥ ∩ c⊥ )) ∩ (c⊥ ∪ (c ∩ a)))) =
(((b ∩ c) ∪ ((b
→2 c) ∪ (a⊥ ∩ c⊥ ))) ∩ ((b ∩ c) ∪
(c⊥ ∪ (c ∩ a)))) |
49 | 30 | lor 70 |
. . . . . . . 8
((b ∩ c) ∪ (b
→2 c)) = ((b ∩ c) ∪
(c ∪ (b⊥ ∩ c⊥ ))) |
50 | | leo 158 |
. . . . . . . . . 10
c ≤ (c ∪ (b⊥ ∩ c⊥ )) |
51 | 34, 50 | letr 137 |
. . . . . . . . 9
(b ∩ c) ≤ (c ∪
(b⊥ ∩ c⊥ )) |
52 | 51 | df-le2 131 |
. . . . . . . 8
((b ∩ c) ∪ (c
∪ (b⊥ ∩ c⊥ ))) = (c ∪ (b⊥ ∩ c⊥ )) |
53 | 49, 52 | ax-r2 36 |
. . . . . . 7
((b ∩ c) ∪ (b
→2 c)) = (c ∪ (b⊥ ∩ c⊥ )) |
54 | 53 | ax-r5 38 |
. . . . . 6
(((b ∩ c) ∪ (b
→2 c)) ∪ (a⊥ ∩ c⊥ )) = ((c ∪ (b⊥ ∩ c⊥ )) ∪ (a⊥ ∩ c⊥ )) |
55 | | ax-a3 32 |
. . . . . 6
(((b ∩ c) ∪ (b
→2 c)) ∪ (a⊥ ∩ c⊥ )) = ((b ∩ c) ∪
((b →2 c) ∪ (a⊥ ∩ c⊥ ))) |
56 | | ax-a2 31 |
. . . . . . . 8
((c ∪ (b⊥ ∩ c⊥ )) ∪ (c ∪ (a⊥ ∩ c⊥ ))) = ((c ∪ (a⊥ ∩ c⊥ )) ∪ (c ∪ (b⊥ ∩ c⊥ ))) |
57 | | orordi 112 |
. . . . . . . 8
(c ∪ ((b⊥ ∩ c⊥ ) ∪ (a⊥ ∩ c⊥ ))) = ((c ∪ (b⊥ ∩ c⊥ )) ∪ (c ∪ (a⊥ ∩ c⊥ ))) |
58 | | df-i2 45 |
. . . . . . . . 9
(a →2 c) = (c ∪
(a⊥ ∩ c⊥ )) |
59 | 58, 30 | 2or 72 |
. . . . . . . 8
((a →2 c) ∪ (b
→2 c)) = ((c ∪ (a⊥ ∩ c⊥ )) ∪ (c ∪ (b⊥ ∩ c⊥ ))) |
60 | 56, 57, 59 | 3tr1 63 |
. . . . . . 7
(c ∪ ((b⊥ ∩ c⊥ ) ∪ (a⊥ ∩ c⊥ ))) = ((a →2 c) ∪ (b
→2 c)) |
61 | 32, 60 | ax-r2 36 |
. . . . . 6
((c ∪ (b⊥ ∩ c⊥ )) ∪ (a⊥ ∩ c⊥ )) = ((a →2 c) ∪ (b
→2 c)) |
62 | 54, 55, 61 | 3tr2 64 |
. . . . 5
((b ∩ c) ∪ ((b
→2 c) ∪ (a⊥ ∩ c⊥ ))) = ((a →2 c) ∪ (b
→2 c)) |
63 | | or12 80 |
. . . . . 6
((b ∩ c) ∪ (c⊥ ∪ (c ∩ a))) =
(c⊥ ∪ ((b ∩ c) ∪
(c ∩ a))) |
64 | | ax-a2 31 |
. . . . . . 7
((c⊥ ∪
(b ∩ c)) ∪ (c⊥ ∪ (c ∩ a))) =
((c⊥ ∪ (c ∩ a))
∪ (c⊥ ∪ (b ∩ c))) |
65 | | orordi 112 |
. . . . . . 7
(c⊥ ∪
((b ∩ c) ∪ (c
∩ a))) = ((c⊥ ∪ (b ∩ c))
∪ (c⊥ ∪ (c ∩ a))) |
66 | | df-i1 44 |
. . . . . . . . 9
(c →1 b) = (c⊥ ∪ (c ∩ b)) |
67 | | ancom 74 |
. . . . . . . . . 10
(c ∩ b) = (b ∩
c) |
68 | 67 | lor 70 |
. . . . . . . . 9
(c⊥ ∪ (c ∩ b)) =
(c⊥ ∪ (b ∩ c)) |
69 | 66, 68 | ax-r2 36 |
. . . . . . . 8
(c →1 b) = (c⊥ ∪ (b ∩ c)) |
70 | 13, 69 | 2or 72 |
. . . . . . 7
((c →1 a) ∪ (c
→1 b)) = ((c⊥ ∪ (c ∩ a))
∪ (c⊥ ∪ (b ∩ c))) |
71 | 64, 65, 70 | 3tr1 63 |
. . . . . 6
(c⊥ ∪
((b ∩ c) ∪ (c
∩ a))) = ((c →1 a) ∪ (c
→1 b)) |
72 | 63, 71 | ax-r2 36 |
. . . . 5
((b ∩ c) ∪ (c⊥ ∪ (c ∩ a))) =
((c →1 a) ∪ (c
→1 b)) |
73 | 62, 72 | 2an 79 |
. . . 4
(((b ∩ c) ∪ ((b
→2 c) ∪ (a⊥ ∩ c⊥ ))) ∩ ((b ∩ c) ∪
(c⊥ ∪ (c ∩ a)))) =
(((a →2 c) ∪ (b
→2 c)) ∩ ((c →1 a) ∪ (c
→1 b))) |
74 | 48, 73 | ax-r2 36 |
. . 3
((b ∩ c) ∪ (((b
→2 c) ∪ (a⊥ ∩ c⊥ )) ∩ (c⊥ ∪ (c ∩ a)))) =
(((a →2 c) ∪ (b
→2 c)) ∩ ((c →1 a) ∪ (c
→1 b))) |
75 | 5, 29, 74 | 3tr 65 |
. 2
(((b ∩ c) ∪ (b⊥ ∩ c⊥ )) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) = (((a →2 c) ∪ (b
→2 c)) ∩ ((c →1 a) ∪ (c
→1 b))) |
76 | 3, 4, 75 | 3tr 65 |
1
((a ≡ c) ∪ (b
≡ c)) = (((a →2 c) ∪ (b
→2 c)) ∩ ((c →1 a) ∪ (c
→1 b))) |