Proof of Theorem sa5
Step | Hyp | Ref
| Expression |
1 | | leor 159 |
. . . . 5
b ≤ (c ∪ b) |
2 | | ax-a2 31 |
. . . . . . . . . 10
(b⊥ ∪ c⊥ ) = (c⊥ ∪ b⊥ ) |
3 | 2 | lan 77 |
. . . . . . . . 9
(b ∩ (b⊥ ∪ c⊥ )) = (b ∩ (c⊥ ∪ b⊥ )) |
4 | 3 | ax-r5 38 |
. . . . . . . 8
((b ∩ (b⊥ ∪ c⊥ )) ∪ c) = ((b ∩
(c⊥ ∪ b⊥ )) ∪ c) |
5 | | ax-a2 31 |
. . . . . . . 8
((b ∩ (c⊥ ∪ b⊥ )) ∪ c) = (c ∪
(b ∩ (c⊥ ∪ b⊥ ))) |
6 | | oml6 488 |
. . . . . . . 8
(c ∪ (b ∩ (c⊥ ∪ b⊥ ))) = (c ∪ b) |
7 | 4, 5, 6 | 3tr 65 |
. . . . . . 7
((b ∩ (b⊥ ∪ c⊥ )) ∪ c) = (c ∪
b) |
8 | 7 | ax-r1 35 |
. . . . . 6
(c ∪ b) = ((b ∩
(b⊥ ∪ c⊥ )) ∪ c) |
9 | | sa5.1 |
. . . . . . . . . 10
(a →1 c) ≤ (b
→1 c) |
10 | 9 | lecon 154 |
. . . . . . . . 9
(b →1 c)⊥ ≤ (a →1 c)⊥ |
11 | | ud1lem0c 277 |
. . . . . . . . 9
(b →1 c)⊥ = (b ∩ (b⊥ ∪ c⊥ )) |
12 | | ud1lem0c 277 |
. . . . . . . . 9
(a →1 c)⊥ = (a ∩ (a⊥ ∪ c⊥ )) |
13 | 10, 11, 12 | le3tr2 141 |
. . . . . . . 8
(b ∩ (b⊥ ∪ c⊥ )) ≤ (a ∩ (a⊥ ∪ c⊥ )) |
14 | | lea 160 |
. . . . . . . 8
(a ∩ (a⊥ ∪ c⊥ )) ≤ a |
15 | 13, 14 | letr 137 |
. . . . . . 7
(b ∩ (b⊥ ∪ c⊥ )) ≤ a |
16 | 15 | leror 152 |
. . . . . 6
((b ∩ (b⊥ ∪ c⊥ )) ∪ c) ≤ (a ∪
c) |
17 | 8, 16 | bltr 138 |
. . . . 5
(c ∪ b) ≤ (a ∪
c) |
18 | 1, 17 | letr 137 |
. . . 4
b ≤ (a ∪ c) |
19 | | ax-a1 30 |
. . . 4
b = b⊥
⊥ |
20 | | ax-a1 30 |
. . . . . 6
a = a⊥
⊥ |
21 | | ax-a2 31 |
. . . . . . 7
(c ∪ (c ∩ a⊥ )) = ((c ∩ a⊥ ) ∪ c) |
22 | | orabs 120 |
. . . . . . 7
(c ∪ (c ∩ a⊥ )) = c |
23 | | ancom 74 |
. . . . . . . 8
(c ∩ a⊥ ) = (a⊥ ∩ c) |
24 | 23 | ax-r5 38 |
. . . . . . 7
((c ∩ a⊥ ) ∪ c) = ((a⊥ ∩ c) ∪ c) |
25 | 21, 22, 24 | 3tr2 64 |
. . . . . 6
c = ((a⊥ ∩ c) ∪ c) |
26 | 20, 25 | 2or 72 |
. . . . 5
(a ∪ c) = (a⊥ ⊥ ∪
((a⊥ ∩ c) ∪ c)) |
27 | | ax-a3 32 |
. . . . . 6
((a⊥
⊥ ∪ (a⊥ ∩ c)) ∪ c) =
(a⊥ ⊥
∪ ((a⊥ ∩ c) ∪ c)) |
28 | 27 | ax-r1 35 |
. . . . 5
(a⊥
⊥ ∪ ((a⊥ ∩ c) ∪ c)) =
((a⊥ ⊥
∪ (a⊥ ∩ c)) ∪ c) |
29 | 26, 28 | ax-r2 36 |
. . . 4
(a ∪ c) = ((a⊥ ⊥ ∪
(a⊥ ∩ c)) ∪ c) |
30 | 18, 19, 29 | le3tr2 141 |
. . 3
b⊥
⊥ ≤ ((a⊥ ⊥ ∪
(a⊥ ∩ c)) ∪ c) |
31 | | lear 161 |
. . . 4
(b⊥ ∩ c) ≤ c |
32 | | leor 159 |
. . . 4
c ≤ ((a⊥ ⊥ ∪
(a⊥ ∩ c)) ∪ c) |
33 | 31, 32 | letr 137 |
. . 3
(b⊥ ∩ c) ≤ ((a⊥ ⊥ ∪
(a⊥ ∩ c)) ∪ c) |
34 | 30, 33 | lel2or 170 |
. 2
(b⊥
⊥ ∪ (b⊥ ∩ c)) ≤ ((a⊥ ⊥ ∪
(a⊥ ∩ c)) ∪ c) |
35 | | df-i1 44 |
. 2
(b⊥ →1
c) = (b⊥ ⊥ ∪
(b⊥ ∩ c)) |
36 | | df-i1 44 |
. . 3
(a⊥ →1
c) = (a⊥ ⊥ ∪
(a⊥ ∩ c)) |
37 | 36 | ax-r5 38 |
. 2
((a⊥ →1
c) ∪ c) = ((a⊥ ⊥ ∪
(a⊥ ∩ c)) ∪ c) |
38 | 34, 35, 37 | le3tr1 140 |
1
(b⊥ →1
c) ≤ ((a⊥ →1 c) ∪ c) |