Proof of Theorem salem1
Step | Hyp | Ref
| Expression |
1 | | u1lemob 630 |
. . . . . 6
((a⊥ →1
b) ∪ b) = (a⊥ ⊥ ∪
b) |
2 | 1 | ax-r4 37 |
. . . . 5
((a⊥ →1
b) ∪ b)⊥ = (a⊥ ⊥ ∪
b)⊥ |
3 | | anor1 88 |
. . . . . 6
(a⊥ ∩ b⊥ ) = (a⊥ ⊥ ∪
b)⊥ |
4 | 3 | ax-r1 35 |
. . . . 5
(a⊥
⊥ ∪ b)⊥ = (a⊥ ∩ b⊥ ) |
5 | 2, 4 | ax-r2 36 |
. . . 4
((a⊥ →1
b) ∪ b)⊥ = (a⊥ ∩ b⊥ ) |
6 | 1 | ran 78 |
. . . . 5
(((a⊥ →1
b) ∪ b) ∩ b) =
((a⊥ ⊥
∪ b) ∩ b) |
7 | | ax-a2 31 |
. . . . . . 7
(a⊥
⊥ ∪ b) = (b ∪ a⊥ ⊥
) |
8 | 7 | ran 78 |
. . . . . 6
((a⊥
⊥ ∪ b) ∩ b) = ((b ∪
a⊥ ⊥ )
∩ b) |
9 | | ancom 74 |
. . . . . 6
((b ∪ a⊥ ⊥ ) ∩
b) = (b
∩ (b ∪ a⊥ ⊥
)) |
10 | 8, 9 | ax-r2 36 |
. . . . 5
((a⊥
⊥ ∪ b) ∩ b) = (b ∩
(b ∪ a⊥ ⊥
)) |
11 | | anabs 121 |
. . . . 5
(b ∩ (b ∪ a⊥ ⊥ )) = b |
12 | 6, 10, 11 | 3tr 65 |
. . . 4
(((a⊥ →1
b) ∪ b) ∩ b) =
b |
13 | 5, 12 | 2or 72 |
. . 3
(((a⊥ →1
b) ∪ b)⊥ ∪ (((a⊥ →1 b) ∪ b)
∩ b)) = ((a⊥ ∩ b⊥ ) ∪ b) |
14 | | ax-a2 31 |
. . 3
((a⊥ ∩ b⊥ ) ∪ b) = (b ∪
(a⊥ ∩ b⊥ )) |
15 | 13, 14 | ax-r2 36 |
. 2
(((a⊥ →1
b) ∪ b)⊥ ∪ (((a⊥ →1 b) ∪ b)
∩ b)) = (b ∪ (a⊥ ∩ b⊥ )) |
16 | | df-i1 44 |
. 2
(((a⊥ →1
b) ∪ b) →1 b) = (((a⊥ →1 b) ∪ b)⊥ ∪ (((a⊥ →1 b) ∪ b)
∩ b)) |
17 | | df-i2 45 |
. 2
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
18 | 15, 16, 17 | 3tr1 63 |
1
(((a⊥ →1
b) ∪ b) →1 b) = (a
→2 b) |