Proof of Theorem wr5-2v
Step | Hyp | Ref
| Expression |
1 | | df-i2 45 |
. . 3
((a ∪ c) →2 (b ∪ c)) =
((b ∪ c) ∪ ((a
∪ c)⊥ ∩ (b ∪ c)⊥ )) |
2 | | df-i2 45 |
. . . . 5
(a →2 (b ∪ c)) =
((b ∪ c) ∪ (a⊥ ∩ (b ∪ c)⊥ )) |
3 | 2 | ax-r1 35 |
. . . 4
((b ∪ c) ∪ (a⊥ ∩ (b ∪ c)⊥ )) = (a →2 (b ∪ c)) |
4 | | anandir 115 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∩ c⊥ ) = ((a⊥ ∩ c⊥ ) ∩ (b⊥ ∩ c⊥ )) |
5 | | anass 76 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∩ c⊥ ) = (a⊥ ∩ (b⊥ ∩ c⊥ )) |
6 | | anor3 90 |
. . . . . . . 8
(b⊥ ∩ c⊥ ) = (b ∪ c)⊥ |
7 | 6 | lan 77 |
. . . . . . 7
(a⊥ ∩ (b⊥ ∩ c⊥ )) = (a⊥ ∩ (b ∪ c)⊥ ) |
8 | 5, 7 | ax-r2 36 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∩ c⊥ ) = (a⊥ ∩ (b ∪ c)⊥ ) |
9 | | anor3 90 |
. . . . . . 7
(a⊥ ∩ c⊥ ) = (a ∪ c)⊥ |
10 | 9, 6 | 2an 79 |
. . . . . 6
((a⊥ ∩ c⊥ ) ∩ (b⊥ ∩ c⊥ )) = ((a ∪ c)⊥ ∩ (b ∪ c)⊥ ) |
11 | 4, 8, 10 | 3tr2 64 |
. . . . 5
(a⊥ ∩ (b ∪ c)⊥ ) = ((a ∪ c)⊥ ∩ (b ∪ c)⊥ ) |
12 | 11 | lor 70 |
. . . 4
((b ∪ c) ∪ (a⊥ ∩ (b ∪ c)⊥ )) = ((b ∪ c) ∪
((a ∪ c)⊥ ∩ (b ∪ c)⊥ )) |
13 | | df-i1 44 |
. . . . . 6
(a →1 (b ∪ c)) =
(a⊥ ∪ (a ∩ (b ∪
c))) |
14 | | wr5-2v.1 |
. . . . . . . . . . . . . 14
(a ≡ b) = 1 |
15 | | wlem1 243 |
. . . . . . . . . . . . . 14
((a ≡ b)⊥ ∪ ((a →1 b) ∩ (b
→1 a))) =
1 |
16 | 14, 15 | skr0 242 |
. . . . . . . . . . . . 13
((a →1 b) ∩ (b
→1 a)) = 1 |
17 | 16 | ax-r1 35 |
. . . . . . . . . . . 12
1 = ((a →1 b) ∩ (b
→1 a)) |
18 | | lea 160 |
. . . . . . . . . . . 12
((a →1 b) ∩ (b
→1 a)) ≤ (a →1 b) |
19 | 17, 18 | bltr 138 |
. . . . . . . . . . 11
1 ≤ (a →1
b) |
20 | | le1 146 |
. . . . . . . . . . 11
(a →1 b) ≤ 1 |
21 | 19, 20 | lebi 145 |
. . . . . . . . . 10
1 = (a →1 b) |
22 | | df-i1 44 |
. . . . . . . . . 10
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
23 | 21, 22 | ax-r2 36 |
. . . . . . . . 9
1 = (a⊥ ∪
(a ∩ b)) |
24 | | leo 158 |
. . . . . . . . . . 11
b ≤ (b ∪ c) |
25 | 24 | lelan 167 |
. . . . . . . . . 10
(a ∩ b) ≤ (a ∩
(b ∪ c)) |
26 | 25 | lelor 166 |
. . . . . . . . 9
(a⊥ ∪ (a ∩ b)) ≤
(a⊥ ∪ (a ∩ (b ∪
c))) |
27 | 23, 26 | bltr 138 |
. . . . . . . 8
1 ≤ (a⊥ ∪
(a ∩ (b ∪ c))) |
28 | | le1 146 |
. . . . . . . 8
(a⊥ ∪ (a ∩ (b ∪
c))) ≤ 1 |
29 | 27, 28 | lebi 145 |
. . . . . . 7
1 = (a⊥ ∪
(a ∩ (b ∪ c))) |
30 | 29 | ax-r1 35 |
. . . . . 6
(a⊥ ∪ (a ∩ (b ∪
c))) = 1 |
31 | 13, 30 | ax-r2 36 |
. . . . 5
(a →1 (b ∪ c)) =
1 |
32 | 31 | 2vwomr1a 363 |
. . . 4
(a →2 (b ∪ c)) =
1 |
33 | 3, 12, 32 | 3tr2 64 |
. . 3
((b ∪ c) ∪ ((a
∪ c)⊥ ∩ (b ∪ c)⊥ )) = 1 |
34 | 1, 33 | ax-r2 36 |
. 2
((a ∪ c) →2 (b ∪ c)) =
1 |
35 | | df-i2 45 |
. . 3
((b ∪ c) →2 (a ∪ c)) =
((a ∪ c) ∪ ((b
∪ c)⊥ ∩ (a ∪ c)⊥ )) |
36 | | df-i2 45 |
. . . . 5
(b →2 (a ∪ c)) =
((a ∪ c) ∪ (b⊥ ∩ (a ∪ c)⊥ )) |
37 | 36 | ax-r1 35 |
. . . 4
((a ∪ c) ∪ (b⊥ ∩ (a ∪ c)⊥ )) = (b →2 (a ∪ c)) |
38 | | anandir 115 |
. . . . . 6
((b⊥ ∩ a⊥ ) ∩ c⊥ ) = ((b⊥ ∩ c⊥ ) ∩ (a⊥ ∩ c⊥ )) |
39 | | anass 76 |
. . . . . . 7
((b⊥ ∩ a⊥ ) ∩ c⊥ ) = (b⊥ ∩ (a⊥ ∩ c⊥ )) |
40 | 9 | lan 77 |
. . . . . . 7
(b⊥ ∩ (a⊥ ∩ c⊥ )) = (b⊥ ∩ (a ∪ c)⊥ ) |
41 | 39, 40 | ax-r2 36 |
. . . . . 6
((b⊥ ∩ a⊥ ) ∩ c⊥ ) = (b⊥ ∩ (a ∪ c)⊥ ) |
42 | 6, 9 | 2an 79 |
. . . . . 6
((b⊥ ∩ c⊥ ) ∩ (a⊥ ∩ c⊥ )) = ((b ∪ c)⊥ ∩ (a ∪ c)⊥ ) |
43 | 38, 41, 42 | 3tr2 64 |
. . . . 5
(b⊥ ∩ (a ∪ c)⊥ ) = ((b ∪ c)⊥ ∩ (a ∪ c)⊥ ) |
44 | 43 | lor 70 |
. . . 4
((a ∪ c) ∪ (b⊥ ∩ (a ∪ c)⊥ )) = ((a ∪ c) ∪
((b ∪ c)⊥ ∩ (a ∪ c)⊥ )) |
45 | | df-i1 44 |
. . . . . 6
(b →1 (a ∪ c)) =
(b⊥ ∪ (b ∩ (a ∪
c))) |
46 | | lear 161 |
. . . . . . . . . . . 12
((a →1 b) ∩ (b
→1 a)) ≤ (b →1 a) |
47 | 17, 46 | bltr 138 |
. . . . . . . . . . 11
1 ≤ (b →1
a) |
48 | | le1 146 |
. . . . . . . . . . 11
(b →1 a) ≤ 1 |
49 | 47, 48 | lebi 145 |
. . . . . . . . . 10
1 = (b →1 a) |
50 | | df-i1 44 |
. . . . . . . . . 10
(b →1 a) = (b⊥ ∪ (b ∩ a)) |
51 | 49, 50 | ax-r2 36 |
. . . . . . . . 9
1 = (b⊥ ∪
(b ∩ a)) |
52 | | leo 158 |
. . . . . . . . . . 11
a ≤ (a ∪ c) |
53 | 52 | lelan 167 |
. . . . . . . . . 10
(b ∩ a) ≤ (b ∩
(a ∪ c)) |
54 | 53 | lelor 166 |
. . . . . . . . 9
(b⊥ ∪ (b ∩ a)) ≤
(b⊥ ∪ (b ∩ (a ∪
c))) |
55 | 51, 54 | bltr 138 |
. . . . . . . 8
1 ≤ (b⊥ ∪
(b ∩ (a ∪ c))) |
56 | | le1 146 |
. . . . . . . 8
(b⊥ ∪ (b ∩ (a ∪
c))) ≤ 1 |
57 | 55, 56 | lebi 145 |
. . . . . . 7
1 = (b⊥ ∪
(b ∩ (a ∪ c))) |
58 | 57 | ax-r1 35 |
. . . . . 6
(b⊥ ∪ (b ∩ (a ∪
c))) = 1 |
59 | 45, 58 | ax-r2 36 |
. . . . 5
(b →1 (a ∪ c)) =
1 |
60 | 59 | 2vwomr1a 363 |
. . . 4
(b →2 (a ∪ c)) =
1 |
61 | 37, 44, 60 | 3tr2 64 |
. . 3
((a ∪ c) ∪ ((b
∪ c)⊥ ∩ (a ∪ c)⊥ )) = 1 |
62 | 35, 61 | ax-r2 36 |
. 2
((b ∪ c) →2 (a ∪ c)) =
1 |
63 | 34, 62 | 2vwomlem 365 |
1
((a ∪ c) ≡ (b
∪ c)) = 1 |