Proof of Theorem wr5-2v
| Step | Hyp | Ref
| Expression |
| 1 | | df-i2 45 |
. . 3
((a ∪ c) →2 (b ∪ c)) =
((b ∪ c) ∪ ((a
∪ c)⊥ ∩ (b ∪ c)⊥ )) |
| 2 | | df-i2 45 |
. . . . 5
(a →2 (b ∪ c)) =
((b ∪ c) ∪ (a⊥ ∩ (b ∪ c)⊥ )) |
| 3 | 2 | ax-r1 35 |
. . . 4
((b ∪ c) ∪ (a⊥ ∩ (b ∪ c)⊥ )) = (a →2 (b ∪ c)) |
| 4 | | anandir 115 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∩ c⊥ ) = ((a⊥ ∩ c⊥ ) ∩ (b⊥ ∩ c⊥ )) |
| 5 | | anass 76 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∩ c⊥ ) = (a⊥ ∩ (b⊥ ∩ c⊥ )) |
| 6 | | anor3 90 |
. . . . . . . 8
(b⊥ ∩ c⊥ ) = (b ∪ c)⊥ |
| 7 | 6 | lan 77 |
. . . . . . 7
(a⊥ ∩ (b⊥ ∩ c⊥ )) = (a⊥ ∩ (b ∪ c)⊥ ) |
| 8 | 5, 7 | ax-r2 36 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∩ c⊥ ) = (a⊥ ∩ (b ∪ c)⊥ ) |
| 9 | | anor3 90 |
. . . . . . 7
(a⊥ ∩ c⊥ ) = (a ∪ c)⊥ |
| 10 | 9, 6 | 2an 79 |
. . . . . 6
((a⊥ ∩ c⊥ ) ∩ (b⊥ ∩ c⊥ )) = ((a ∪ c)⊥ ∩ (b ∪ c)⊥ ) |
| 11 | 4, 8, 10 | 3tr2 64 |
. . . . 5
(a⊥ ∩ (b ∪ c)⊥ ) = ((a ∪ c)⊥ ∩ (b ∪ c)⊥ ) |
| 12 | 11 | lor 70 |
. . . 4
((b ∪ c) ∪ (a⊥ ∩ (b ∪ c)⊥ )) = ((b ∪ c) ∪
((a ∪ c)⊥ ∩ (b ∪ c)⊥ )) |
| 13 | | df-i1 44 |
. . . . . 6
(a →1 (b ∪ c)) =
(a⊥ ∪ (a ∩ (b ∪
c))) |
| 14 | | wr5-2v.1 |
. . . . . . . . . . . . . 14
(a ≡ b) = 1 |
| 15 | | wlem1 243 |
. . . . . . . . . . . . . 14
((a ≡ b)⊥ ∪ ((a →1 b) ∩ (b
→1 a))) =
1 |
| 16 | 14, 15 | skr0 242 |
. . . . . . . . . . . . 13
((a →1 b) ∩ (b
→1 a)) = 1 |
| 17 | 16 | ax-r1 35 |
. . . . . . . . . . . 12
1 = ((a →1 b) ∩ (b
→1 a)) |
| 18 | | lea 160 |
. . . . . . . . . . . 12
((a →1 b) ∩ (b
→1 a)) ≤ (a →1 b) |
| 19 | 17, 18 | bltr 138 |
. . . . . . . . . . 11
1 ≤ (a →1
b) |
| 20 | | le1 146 |
. . . . . . . . . . 11
(a →1 b) ≤ 1 |
| 21 | 19, 20 | lebi 145 |
. . . . . . . . . 10
1 = (a →1 b) |
| 22 | | df-i1 44 |
. . . . . . . . . 10
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
| 23 | 21, 22 | ax-r2 36 |
. . . . . . . . 9
1 = (a⊥ ∪
(a ∩ b)) |
| 24 | | leo 158 |
. . . . . . . . . . 11
b ≤ (b ∪ c) |
| 25 | 24 | lelan 167 |
. . . . . . . . . 10
(a ∩ b) ≤ (a ∩
(b ∪ c)) |
| 26 | 25 | lelor 166 |
. . . . . . . . 9
(a⊥ ∪ (a ∩ b)) ≤
(a⊥ ∪ (a ∩ (b ∪
c))) |
| 27 | 23, 26 | bltr 138 |
. . . . . . . 8
1 ≤ (a⊥ ∪
(a ∩ (b ∪ c))) |
| 28 | | le1 146 |
. . . . . . . 8
(a⊥ ∪ (a ∩ (b ∪
c))) ≤ 1 |
| 29 | 27, 28 | lebi 145 |
. . . . . . 7
1 = (a⊥ ∪
(a ∩ (b ∪ c))) |
| 30 | 29 | ax-r1 35 |
. . . . . 6
(a⊥ ∪ (a ∩ (b ∪
c))) = 1 |
| 31 | 13, 30 | ax-r2 36 |
. . . . 5
(a →1 (b ∪ c)) =
1 |
| 32 | 31 | 2vwomr1a 363 |
. . . 4
(a →2 (b ∪ c)) =
1 |
| 33 | 3, 12, 32 | 3tr2 64 |
. . 3
((b ∪ c) ∪ ((a
∪ c)⊥ ∩ (b ∪ c)⊥ )) = 1 |
| 34 | 1, 33 | ax-r2 36 |
. 2
((a ∪ c) →2 (b ∪ c)) =
1 |
| 35 | | df-i2 45 |
. . 3
((b ∪ c) →2 (a ∪ c)) =
((a ∪ c) ∪ ((b
∪ c)⊥ ∩ (a ∪ c)⊥ )) |
| 36 | | df-i2 45 |
. . . . 5
(b →2 (a ∪ c)) =
((a ∪ c) ∪ (b⊥ ∩ (a ∪ c)⊥ )) |
| 37 | 36 | ax-r1 35 |
. . . 4
((a ∪ c) ∪ (b⊥ ∩ (a ∪ c)⊥ )) = (b →2 (a ∪ c)) |
| 38 | | anandir 115 |
. . . . . 6
((b⊥ ∩ a⊥ ) ∩ c⊥ ) = ((b⊥ ∩ c⊥ ) ∩ (a⊥ ∩ c⊥ )) |
| 39 | | anass 76 |
. . . . . . 7
((b⊥ ∩ a⊥ ) ∩ c⊥ ) = (b⊥ ∩ (a⊥ ∩ c⊥ )) |
| 40 | 9 | lan 77 |
. . . . . . 7
(b⊥ ∩ (a⊥ ∩ c⊥ )) = (b⊥ ∩ (a ∪ c)⊥ ) |
| 41 | 39, 40 | ax-r2 36 |
. . . . . 6
((b⊥ ∩ a⊥ ) ∩ c⊥ ) = (b⊥ ∩ (a ∪ c)⊥ ) |
| 42 | 6, 9 | 2an 79 |
. . . . . 6
((b⊥ ∩ c⊥ ) ∩ (a⊥ ∩ c⊥ )) = ((b ∪ c)⊥ ∩ (a ∪ c)⊥ ) |
| 43 | 38, 41, 42 | 3tr2 64 |
. . . . 5
(b⊥ ∩ (a ∪ c)⊥ ) = ((b ∪ c)⊥ ∩ (a ∪ c)⊥ ) |
| 44 | 43 | lor 70 |
. . . 4
((a ∪ c) ∪ (b⊥ ∩ (a ∪ c)⊥ )) = ((a ∪ c) ∪
((b ∪ c)⊥ ∩ (a ∪ c)⊥ )) |
| 45 | | df-i1 44 |
. . . . . 6
(b →1 (a ∪ c)) =
(b⊥ ∪ (b ∩ (a ∪
c))) |
| 46 | | lear 161 |
. . . . . . . . . . . 12
((a →1 b) ∩ (b
→1 a)) ≤ (b →1 a) |
| 47 | 17, 46 | bltr 138 |
. . . . . . . . . . 11
1 ≤ (b →1
a) |
| 48 | | le1 146 |
. . . . . . . . . . 11
(b →1 a) ≤ 1 |
| 49 | 47, 48 | lebi 145 |
. . . . . . . . . 10
1 = (b →1 a) |
| 50 | | df-i1 44 |
. . . . . . . . . 10
(b →1 a) = (b⊥ ∪ (b ∩ a)) |
| 51 | 49, 50 | ax-r2 36 |
. . . . . . . . 9
1 = (b⊥ ∪
(b ∩ a)) |
| 52 | | leo 158 |
. . . . . . . . . . 11
a ≤ (a ∪ c) |
| 53 | 52 | lelan 167 |
. . . . . . . . . 10
(b ∩ a) ≤ (b ∩
(a ∪ c)) |
| 54 | 53 | lelor 166 |
. . . . . . . . 9
(b⊥ ∪ (b ∩ a)) ≤
(b⊥ ∪ (b ∩ (a ∪
c))) |
| 55 | 51, 54 | bltr 138 |
. . . . . . . 8
1 ≤ (b⊥ ∪
(b ∩ (a ∪ c))) |
| 56 | | le1 146 |
. . . . . . . 8
(b⊥ ∪ (b ∩ (a ∪
c))) ≤ 1 |
| 57 | 55, 56 | lebi 145 |
. . . . . . 7
1 = (b⊥ ∪
(b ∩ (a ∪ c))) |
| 58 | 57 | ax-r1 35 |
. . . . . 6
(b⊥ ∪ (b ∩ (a ∪
c))) = 1 |
| 59 | 45, 58 | ax-r2 36 |
. . . . 5
(b →1 (a ∪ c)) =
1 |
| 60 | 59 | 2vwomr1a 363 |
. . . 4
(b →2 (a ∪ c)) =
1 |
| 61 | 37, 44, 60 | 3tr2 64 |
. . 3
((a ∪ c) ∪ ((b
∪ c)⊥ ∩ (a ∪ c)⊥ )) = 1 |
| 62 | 35, 61 | ax-r2 36 |
. 2
((b ∪ c) →2 (a ∪ c)) =
1 |
| 63 | 34, 62 | 2vwomlem 365 |
1
((a ∪ c) ≡ (b
∪ c)) = 1 |