Proof of Theorem u1lem11
| Step | Hyp | Ref
| Expression |
| 1 | | ud1lem0c 277 |
. . . . 5
(a⊥ →1
b)⊥ = (a⊥ ∩ (a⊥ ⊥ ∪
b⊥ )) |
| 2 | | ax-a1 30 |
. . . . . . . 8
a = a⊥
⊥ |
| 3 | 2 | ax-r1 35 |
. . . . . . 7
a⊥
⊥ = a |
| 4 | 3 | ax-r5 38 |
. . . . . 6
(a⊥
⊥ ∪ b⊥ ) = (a ∪ b⊥ ) |
| 5 | 4 | lan 77 |
. . . . 5
(a⊥ ∩ (a⊥ ⊥ ∪
b⊥ )) = (a⊥ ∩ (a ∪ b⊥ )) |
| 6 | 1, 5 | ax-r2 36 |
. . . 4
(a⊥ →1
b)⊥ = (a⊥ ∩ (a ∪ b⊥ )) |
| 7 | | u1lemab 610 |
. . . . 5
((a⊥ →1
b) ∩ b) = ((a⊥ ∩ b) ∪ (a⊥ ⊥ ∩
b)) |
| 8 | | ax-a2 31 |
. . . . 5
((a⊥ ∩ b) ∪ (a⊥ ⊥ ∩
b)) = ((a⊥ ⊥ ∩
b) ∪ (a⊥ ∩ b)) |
| 9 | 2 | ran 78 |
. . . . . . 7
(a ∩ b) = (a⊥ ⊥ ∩
b) |
| 10 | 9 | ax-r5 38 |
. . . . . 6
((a ∩ b) ∪ (a⊥ ∩ b)) = ((a⊥ ⊥ ∩
b) ∪ (a⊥ ∩ b)) |
| 11 | 10 | ax-r1 35 |
. . . . 5
((a⊥
⊥ ∩ b) ∪ (a⊥ ∩ b)) = ((a ∩
b) ∪ (a⊥ ∩ b)) |
| 12 | 7, 8, 11 | 3tr 65 |
. . . 4
((a⊥ →1
b) ∩ b) = ((a ∩
b) ∪ (a⊥ ∩ b)) |
| 13 | 6, 12 | 2or 72 |
. . 3
((a⊥ →1
b)⊥ ∪ ((a⊥ →1 b) ∩ b)) =
((a⊥ ∩ (a ∪ b⊥ )) ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) |
| 14 | | comanr1 464 |
. . . . . . 7
a C (a ∩ b) |
| 15 | 14 | comcom3 454 |
. . . . . 6
a⊥ C
(a ∩ b) |
| 16 | | comanr1 464 |
. . . . . 6
a⊥ C
(a⊥ ∩ b) |
| 17 | 15, 16 | com2or 483 |
. . . . 5
a⊥ C
((a ∩ b) ∪ (a⊥ ∩ b)) |
| 18 | 17 | comcom 453 |
. . . 4
((a ∩ b) ∪ (a⊥ ∩ b)) C a⊥ |
| 19 | | comor1 461 |
. . . . . . 7
(a ∪ b⊥ ) C a |
| 20 | | comor2 462 |
. . . . . . . 8
(a ∪ b⊥ ) C b⊥ |
| 21 | 20 | comcom7 460 |
. . . . . . 7
(a ∪ b⊥ ) C b |
| 22 | 19, 21 | com2an 484 |
. . . . . 6
(a ∪ b⊥ ) C (a ∩ b) |
| 23 | 19 | comcom2 183 |
. . . . . . 7
(a ∪ b⊥ ) C a⊥ |
| 24 | 23, 21 | com2an 484 |
. . . . . 6
(a ∪ b⊥ ) C (a⊥ ∩ b) |
| 25 | 22, 24 | com2or 483 |
. . . . 5
(a ∪ b⊥ ) C ((a ∩ b) ∪
(a⊥ ∩ b)) |
| 26 | 25 | comcom 453 |
. . . 4
((a ∩ b) ∪ (a⊥ ∩ b)) C (a
∪ b⊥
) |
| 27 | 18, 26 | fh3r 475 |
. . 3
((a⊥ ∩
(a ∪ b⊥ )) ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) = ((a⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) ∩ ((a
∪ b⊥ ) ∪
((a ∩ b) ∪ (a⊥ ∩ b)))) |
| 28 | | or32 82 |
. . . . . 6
((a⊥ ∪
(a ∩ b)) ∪ (a⊥ ∩ b)) = ((a⊥ ∪ (a⊥ ∩ b)) ∪ (a
∩ b)) |
| 29 | | ax-a3 32 |
. . . . . 6
((a⊥ ∪
(a ∩ b)) ∪ (a⊥ ∩ b)) = (a⊥ ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) |
| 30 | | orabs 120 |
. . . . . . 7
(a⊥ ∪ (a⊥ ∩ b)) = a⊥ |
| 31 | 30 | ax-r5 38 |
. . . . . 6
((a⊥ ∪
(a⊥ ∩ b)) ∪ (a
∩ b)) = (a⊥ ∪ (a ∩ b)) |
| 32 | 28, 29, 31 | 3tr2 64 |
. . . . 5
(a⊥ ∪
((a ∩ b) ∪ (a⊥ ∩ b))) = (a⊥ ∪ (a ∩ b)) |
| 33 | | or12 80 |
. . . . . 6
((a ∪ b⊥ ) ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) = ((a ∩
b) ∪ ((a ∪ b⊥ ) ∪ (a⊥ ∩ b))) |
| 34 | | anor2 89 |
. . . . . . . . 9
(a⊥ ∩ b) = (a ∪
b⊥
)⊥ |
| 35 | 34 | lor 70 |
. . . . . . . 8
((a ∪ b⊥ ) ∪ (a⊥ ∩ b)) = ((a ∪
b⊥ ) ∪ (a ∪ b⊥ )⊥
) |
| 36 | | df-t 41 |
. . . . . . . . 9
1 = ((a ∪ b⊥ ) ∪ (a ∪ b⊥ )⊥
) |
| 37 | 36 | ax-r1 35 |
. . . . . . . 8
((a ∪ b⊥ ) ∪ (a ∪ b⊥ )⊥ ) =
1 |
| 38 | 35, 37 | ax-r2 36 |
. . . . . . 7
((a ∪ b⊥ ) ∪ (a⊥ ∩ b)) = 1 |
| 39 | 38 | lor 70 |
. . . . . 6
((a ∩ b) ∪ ((a
∪ b⊥ ) ∪ (a⊥ ∩ b))) = ((a ∩
b) ∪ 1) |
| 40 | | or1 104 |
. . . . . 6
((a ∩ b) ∪ 1) = 1 |
| 41 | 33, 39, 40 | 3tr 65 |
. . . . 5
((a ∪ b⊥ ) ∪ ((a ∩ b) ∪
(a⊥ ∩ b))) = 1 |
| 42 | 32, 41 | 2an 79 |
. . . 4
((a⊥ ∪
((a ∩ b) ∪ (a⊥ ∩ b))) ∩ ((a
∪ b⊥ ) ∪
((a ∩ b) ∪ (a⊥ ∩ b)))) = ((a⊥ ∪ (a ∩ b))
∩ 1) |
| 43 | | an1 106 |
. . . 4
((a⊥ ∪
(a ∩ b)) ∩ 1) = (a⊥ ∪ (a ∩ b)) |
| 44 | 42, 43 | ax-r2 36 |
. . 3
((a⊥ ∪
((a ∩ b) ∪ (a⊥ ∩ b))) ∩ ((a
∪ b⊥ ) ∪
((a ∩ b) ∪ (a⊥ ∩ b)))) = (a⊥ ∪ (a ∩ b)) |
| 45 | 13, 27, 44 | 3tr 65 |
. 2
((a⊥ →1
b)⊥ ∪ ((a⊥ →1 b) ∩ b)) =
(a⊥ ∪ (a ∩ b)) |
| 46 | | df-i1 44 |
. 2
((a⊥ →1
b) →1 b) = ((a⊥ →1 b)⊥ ∪ ((a⊥ →1 b) ∩ b)) |
| 47 | | df-i1 44 |
. 2
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
| 48 | 45, 46, 47 | 3tr1 63 |
1
((a⊥ →1
b) →1 b) = (a
→1 b) |