Proof of Theorem u2lem8
Step | Hyp | Ref
| Expression |
1 | | df-i2 45 |
. 2
(a⊥ →2
(a →2 (a⊥ →2 b))) = ((a
→2 (a⊥
→2 b)) ∪ (a⊥ ⊥ ∩
(a →2 (a⊥ →2 b))⊥ )) |
2 | | u2lem7 773 |
. . . 4
(a →2 (a⊥ →2 b)) = (((a ∩
b⊥ ) ∪ (a⊥ ∩ b⊥ )) ∪ b) |
3 | | ax-a1 30 |
. . . . . . 7
a = a⊥
⊥ |
4 | 3 | ax-r1 35 |
. . . . . 6
a⊥
⊥ = a |
5 | | u2lem7n 775 |
. . . . . 6
(a →2 (a⊥ →2 b))⊥ = (((a ∪ b) ∩
(a⊥ ∪ b)) ∩ b⊥ ) |
6 | 4, 5 | 2an 79 |
. . . . 5
(a⊥
⊥ ∩ (a →2
(a⊥ →2
b))⊥ ) = (a ∩ (((a
∪ b) ∩ (a⊥ ∪ b)) ∩ b⊥ )) |
7 | | an12 81 |
. . . . . 6
(a ∩ (((a ∪ b) ∩
(a⊥ ∪ b)) ∩ b⊥ )) = (((a ∪ b) ∩
(a⊥ ∪ b)) ∩ (a
∩ b⊥
)) |
8 | | anass 76 |
. . . . . . 7
(((a ∪ b) ∩ (a⊥ ∪ b)) ∩ (a
∩ b⊥ )) = ((a ∪ b) ∩
((a⊥ ∪ b) ∩ (a
∩ b⊥
))) |
9 | | anor1 88 |
. . . . . . . . . . 11
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
10 | 9 | lan 77 |
. . . . . . . . . 10
((a⊥ ∪ b) ∩ (a
∩ b⊥ )) = ((a⊥ ∪ b) ∩ (a⊥ ∪ b)⊥ ) |
11 | | dff 101 |
. . . . . . . . . . 11
0 = ((a⊥ ∪
b) ∩ (a⊥ ∪ b)⊥ ) |
12 | 11 | ax-r1 35 |
. . . . . . . . . 10
((a⊥ ∪ b) ∩ (a⊥ ∪ b)⊥ ) = 0 |
13 | 10, 12 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∪ b) ∩ (a
∩ b⊥ )) =
0 |
14 | 13 | lan 77 |
. . . . . . . 8
((a ∪ b) ∩ ((a⊥ ∪ b) ∩ (a
∩ b⊥ ))) = ((a ∪ b) ∩
0) |
15 | | an0 108 |
. . . . . . . 8
((a ∪ b) ∩ 0) = 0 |
16 | 14, 15 | ax-r2 36 |
. . . . . . 7
((a ∪ b) ∩ ((a⊥ ∪ b) ∩ (a
∩ b⊥ ))) =
0 |
17 | 8, 16 | ax-r2 36 |
. . . . . 6
(((a ∪ b) ∩ (a⊥ ∪ b)) ∩ (a
∩ b⊥ )) =
0 |
18 | 7, 17 | ax-r2 36 |
. . . . 5
(a ∩ (((a ∪ b) ∩
(a⊥ ∪ b)) ∩ b⊥ )) = 0 |
19 | 6, 18 | ax-r2 36 |
. . . 4
(a⊥
⊥ ∩ (a →2
(a⊥ →2
b))⊥ ) =
0 |
20 | 2, 19 | 2or 72 |
. . 3
((a →2 (a⊥ →2 b)) ∪ (a⊥ ⊥ ∩
(a →2 (a⊥ →2 b))⊥ )) = ((((a ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )) ∪ b) ∪ 0) |
21 | | or0 102 |
. . . 4
((((a ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )) ∪ b) ∪ 0) = (((a ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )) ∪ b) |
22 | 2 | ax-r1 35 |
. . . 4
(((a ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )) ∪ b) = (a
→2 (a⊥
→2 b)) |
23 | 21, 22 | ax-r2 36 |
. . 3
((((a ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )) ∪ b) ∪ 0) = (a
→2 (a⊥
→2 b)) |
24 | 20, 23 | ax-r2 36 |
. 2
((a →2 (a⊥ →2 b)) ∪ (a⊥ ⊥ ∩
(a →2 (a⊥ →2 b))⊥ )) = (a →2 (a⊥ →2 b)) |
25 | 1, 24 | ax-r2 36 |
1
(a⊥ →2
(a →2 (a⊥ →2 b))) = (a
→2 (a⊥
→2 b)) |