Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > ud1lem0b | GIF version |
Description: Introduce →1 to the right. (Contributed by NM, 23-Nov-1997.) |
Ref | Expression |
---|---|
ud1lem0a.1 | a = b |
Ref | Expression |
---|---|
ud1lem0b | (a →1 c) = (b →1 c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ud1lem0a.1 | . . . 4 a = b | |
2 | 1 | ax-r4 37 | . . 3 a⊥ = b⊥ |
3 | 1 | ran 78 | . . 3 (a ∩ c) = (b ∩ c) |
4 | 2, 3 | 2or 72 | . 2 (a⊥ ∪ (a ∩ c)) = (b⊥ ∪ (b ∩ c)) |
5 | df-i1 44 | . 2 (a →1 c) = (a⊥ ∪ (a ∩ c)) | |
6 | df-i1 44 | . 2 (b →1 c) = (b⊥ ∪ (b ∩ c)) | |
7 | 4, 5, 6 | 3tr1 63 | 1 (a →1 c) = (b →1 c) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-i1 44 |
This theorem is referenced by: ud1lem0ab 257 wql1 293 ud1 595 oi3oa3lem1 732 oi3oa3 733 u1lem12 781 1oaiii 823 sac 835 oa4to4u 973 oa4uto4g 975 oa4gto4u 976 |
Copyright terms: Public domain | W3C validator |