Proof of Theorem sadm3
Step | Hyp | Ref
| Expression |
1 | | oran3 93 |
. . . . . . 7
((a⊥ →1
c)⊥ ∪ (b⊥ →1 c)⊥ ) = ((a⊥ →1 c) ∩ (b⊥ →1 c))⊥ |
2 | 1 | ax-r1 35 |
. . . . . 6
((a⊥ →1
c) ∩ (b⊥ →1 c))⊥ = ((a⊥ →1 c)⊥ ∪ (b⊥ →1 c)⊥ ) |
3 | | u1lem9a 777 |
. . . . . . 7
(a⊥ →1
c)⊥ ≤ a⊥ |
4 | | u1lem9a 777 |
. . . . . . 7
(b⊥ →1
c)⊥ ≤ b⊥ |
5 | 3, 4 | le2or 168 |
. . . . . 6
((a⊥ →1
c)⊥ ∪ (b⊥ →1 c)⊥ ) ≤ (a⊥ ∪ b⊥ ) |
6 | 2, 5 | bltr 138 |
. . . . 5
((a⊥ →1
c) ∩ (b⊥ →1 c))⊥ ≤ (a⊥ ∪ b⊥ ) |
7 | | an32 83 |
. . . . . 6
(((a⊥ →1
c) ∩ (b⊥ →1 c)) ∩ c) =
(((a⊥ →1
c) ∩ c) ∩ (b⊥ →1 c)) |
8 | | lea 160 |
. . . . . 6
(((a⊥ →1
c) ∩ c) ∩ (b⊥ →1 c)) ≤ ((a⊥ →1 c) ∩ c) |
9 | 7, 8 | bltr 138 |
. . . . 5
(((a⊥ →1
c) ∩ (b⊥ →1 c)) ∩ c)
≤ ((a⊥ →1
c) ∩ c) |
10 | 6, 9 | le2or 168 |
. . . 4
(((a⊥ →1
c) ∩ (b⊥ →1 c))⊥ ∪ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∩ c))
≤ ((a⊥ ∪ b⊥ ) ∪ ((a⊥ →1 c) ∩ c)) |
11 | | leo 158 |
. . . . . 6
(a⊥ ∪ b⊥ ) ≤ ((a⊥ ∪ b⊥ ) ∪ (a ∩ c)) |
12 | | or32 82 |
. . . . . 6
((a⊥ ∪ b⊥ ) ∪ (a ∩ c)) =
((a⊥ ∪ (a ∩ c))
∪ b⊥
) |
13 | 11, 12 | lbtr 139 |
. . . . 5
(a⊥ ∪ b⊥ ) ≤ ((a⊥ ∪ (a ∩ c))
∪ b⊥
) |
14 | | u1lemab 610 |
. . . . . . 7
((a⊥ →1
c) ∩ c) = ((a⊥ ∩ c) ∪ (a⊥ ⊥ ∩
c)) |
15 | | lea 160 |
. . . . . . . 8
(a⊥ ∩ c) ≤ a⊥ |
16 | | ax-a1 30 |
. . . . . . . . . . 11
a = a⊥
⊥ |
17 | 16 | ax-r1 35 |
. . . . . . . . . 10
a⊥
⊥ = a |
18 | 17 | bile 142 |
. . . . . . . . 9
a⊥
⊥ ≤ a |
19 | 18 | leran 153 |
. . . . . . . 8
(a⊥
⊥ ∩ c) ≤ (a ∩ c) |
20 | 15, 19 | le2or 168 |
. . . . . . 7
((a⊥ ∩ c) ∪ (a⊥ ⊥ ∩
c)) ≤ (a⊥ ∪ (a ∩ c)) |
21 | 14, 20 | bltr 138 |
. . . . . 6
((a⊥ →1
c) ∩ c) ≤ (a⊥ ∪ (a ∩ c)) |
22 | | leo 158 |
. . . . . 6
(a⊥ ∪ (a ∩ c)) ≤
((a⊥ ∪ (a ∩ c))
∪ b⊥
) |
23 | 21, 22 | letr 137 |
. . . . 5
((a⊥ →1
c) ∩ c) ≤ ((a⊥ ∪ (a ∩ c))
∪ b⊥
) |
24 | 13, 23 | lel2or 170 |
. . . 4
((a⊥ ∪ b⊥ ) ∪ ((a⊥ →1 c) ∩ c))
≤ ((a⊥ ∪ (a ∩ c))
∪ b⊥
) |
25 | 10, 24 | letr 137 |
. . 3
(((a⊥ →1
c) ∩ (b⊥ →1 c))⊥ ∪ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∩ c))
≤ ((a⊥ ∪ (a ∩ c))
∪ b⊥
) |
26 | | leo 158 |
. . . 4
b⊥ ≤ (b⊥ ∪ (b ∩ c)) |
27 | 26 | lelor 166 |
. . 3
((a⊥ ∪
(a ∩ c)) ∪ b⊥ ) ≤ ((a⊥ ∪ (a ∩ c))
∪ (b⊥ ∪ (b ∩ c))) |
28 | 25, 27 | letr 137 |
. 2
(((a⊥ →1
c) ∩ (b⊥ →1 c))⊥ ∪ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∩ c))
≤ ((a⊥ ∪ (a ∩ c))
∪ (b⊥ ∪ (b ∩ c))) |
29 | | df-i1 44 |
. 2
(((a⊥ →1
c) ∩ (b⊥ →1 c)) →1 c) = (((a⊥ →1 c) ∩ (b⊥ →1 c))⊥ ∪ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∩ c)) |
30 | | df-i1 44 |
. . 3
(a →1 c) = (a⊥ ∪ (a ∩ c)) |
31 | | df-i1 44 |
. . 3
(b →1 c) = (b⊥ ∪ (b ∩ c)) |
32 | 30, 31 | 2or 72 |
. 2
((a →1 c) ∪ (b
→1 c)) = ((a⊥ ∪ (a ∩ c))
∪ (b⊥ ∪ (b ∩ c))) |
33 | 28, 29, 32 | le3tr1 140 |
1
(((a⊥ →1
c) ∩ (b⊥ →1 c)) →1 c) ≤ ((a
→1 c) ∪ (b →1 c)) |