Proof of Theorem u2lemana
| Step | Hyp | Ref
| Expression |
| 1 | | df-i2 45 |
. . 3
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
| 2 | 1 | ran 78 |
. 2
((a →2 b) ∩ a⊥ ) = ((b ∪ (a⊥ ∩ b⊥ )) ∩ a⊥ ) |
| 3 | | ax-a2 31 |
. . . 4
(b ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ b) |
| 4 | 3 | ran 78 |
. . 3
((b ∪ (a⊥ ∩ b⊥ )) ∩ a⊥ ) = (((a⊥ ∩ b⊥ ) ∪ b) ∩ a⊥ ) |
| 5 | | coman1 185 |
. . . . 5
(a⊥ ∩ b⊥ ) C a⊥ |
| 6 | | coman2 186 |
. . . . . 6
(a⊥ ∩ b⊥ ) C b⊥ |
| 7 | 6 | comcom7 460 |
. . . . 5
(a⊥ ∩ b⊥ ) C b |
| 8 | 5, 7 | fh2r 474 |
. . . 4
(((a⊥ ∩
b⊥ ) ∪ b) ∩ a⊥ ) = (((a⊥ ∩ b⊥ ) ∩ a⊥ ) ∪ (b ∩ a⊥ )) |
| 9 | | an32 83 |
. . . . . . 7
((a⊥ ∩ b⊥ ) ∩ a⊥ ) = ((a⊥ ∩ a⊥ ) ∩ b⊥ ) |
| 10 | | anidm 111 |
. . . . . . . 8
(a⊥ ∩ a⊥ ) = a⊥ |
| 11 | 10 | ran 78 |
. . . . . . 7
((a⊥ ∩ a⊥ ) ∩ b⊥ ) = (a⊥ ∩ b⊥ ) |
| 12 | 9, 11 | ax-r2 36 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∩ a⊥ ) = (a⊥ ∩ b⊥ ) |
| 13 | | ancom 74 |
. . . . . 6
(b ∩ a⊥ ) = (a⊥ ∩ b) |
| 14 | 12, 13 | 2or 72 |
. . . . 5
(((a⊥ ∩
b⊥ ) ∩ a⊥ ) ∪ (b ∩ a⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) |
| 15 | | ax-a2 31 |
. . . . 5
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 16 | 14, 15 | ax-r2 36 |
. . . 4
(((a⊥ ∩
b⊥ ) ∩ a⊥ ) ∪ (b ∩ a⊥ )) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 17 | 8, 16 | ax-r2 36 |
. . 3
(((a⊥ ∩
b⊥ ) ∪ b) ∩ a⊥ ) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 18 | 4, 17 | ax-r2 36 |
. 2
((b ∪ (a⊥ ∩ b⊥ )) ∩ a⊥ ) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 19 | 2, 18 | ax-r2 36 |
1
((a →2 b) ∩ a⊥ ) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |