Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > comcom7 | GIF version |
Description: Commutation equivalence. Kalmbach 83 p. 23. (Contributed by NM, 26-Nov-1997.) |
Ref | Expression |
---|---|
comcom7.1 | a C b⊥ |
Ref | Expression |
---|---|
comcom7 | a C b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comcom7.1 | . . 3 a C b⊥ | |
2 | 1 | comcom3 454 | . 2 a⊥ C b⊥ |
3 | 2 | comcom5 458 | 1 a C b |
Colors of variables: term |
Syntax hints: C wc 3 ⊥ wn 4 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: oml6 488 gsth2 490 gt1 492 dfi3b 499 ud3lem1a 566 ud3lem1b 567 ud3lem1c 568 ud3lem1d 569 ud3lem1 570 ud3lem3d 575 ud3lem3 576 ud5lem1b 587 ud5lem1 589 ud5lem3a 591 ud5lem3 594 u2lemaa 601 u2lemana 606 u4lemana 608 u3lemab 612 u3lemanb 617 u4lemoa 623 u4lemona 628 u3lemob 632 u3lemonb 637 comi12 707 u2lemle2 716 u4lemle2 718 u2lembi 721 u4lem5 764 u4lem6 768 u1lem11 780 u3lem11 786 u3lem13b 790 bi1o1a 798 test 802 mlalem 832 bi3 839 bi4 840 orbi 842 mlaconj4 844 neg3antlem2 865 elimconslem 867 mhlemlem1 874 mhlem 876 marsdenlem3 882 marsdenlem4 883 mlaconjo 886 mhcor1 888 e2astlem1 895 govar 896 oa3moa3 1029 lem4.6.2e1 1082 |
Copyright terms: Public domain | W3C validator |