Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > fh2r | GIF version |
Description: Foulis-Holland Theorem. (Contributed by NM, 23-Nov-1997.) |
Ref | Expression |
---|---|
fh.1 | a C b |
fh.2 | a C c |
Ref | Expression |
---|---|
fh2r | ((a ∪ c) ∩ b) = ((a ∩ b) ∪ (c ∩ b)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fh.1 | . . 3 a C b | |
2 | fh.2 | . . 3 a C c | |
3 | 1, 2 | fh2 470 | . 2 (b ∩ (a ∪ c)) = ((b ∩ a) ∪ (b ∩ c)) |
4 | ancom 74 | . 2 ((a ∪ c) ∩ b) = (b ∩ (a ∪ c)) | |
5 | ancom 74 | . . 3 (a ∩ b) = (b ∩ a) | |
6 | ancom 74 | . . 3 (c ∩ b) = (b ∩ c) | |
7 | 5, 6 | 2or 72 | . 2 ((a ∩ b) ∪ (c ∩ b)) = ((b ∩ a) ∪ (b ∩ c)) |
8 | 3, 4, 7 | 3tr1 63 | 1 ((a ∪ c) ∩ b) = ((a ∩ b) ∪ (c ∩ b)) |
Colors of variables: term |
Syntax hints: = wb 1 C wc 3 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: fh2rc 480 ud3lem1a 566 ud3lem2 571 ud3lem3d 575 ud4lem1a 577 ud4lem1b 578 u2lemaa 601 u4lemaa 603 u2lemana 606 u4lemana 608 u1lemab 610 u3lemab 612 u1lemanb 615 u3lemanb 617 u4lemc4 704 u5lemc4 705 u4lem4 759 u24lem 770 bi3 839 bi4 840 marsdenlem1 880 e2astlem1 895 govar 896 |
Copyright terms: Public domain | W3C validator |