Proof of Theorem u3lemana
Step | Hyp | Ref
| Expression |
1 | | df-i3 46 |
. . 3
(a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) |
2 | 1 | ran 78 |
. 2
((a →3 b) ∩ a⊥ ) = ((((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∩ a⊥ ) |
3 | | comanr1 464 |
. . . . 5
a⊥ C
(a⊥ ∩ b) |
4 | | comanr1 464 |
. . . . 5
a⊥ C
(a⊥ ∩ b⊥ ) |
5 | 3, 4 | com2or 483 |
. . . 4
a⊥ C
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
6 | | comid 187 |
. . . . . 6
a C a |
7 | 6 | comcom3 454 |
. . . . 5
a⊥ C
a |
8 | | comorr 184 |
. . . . 5
a⊥ C
(a⊥ ∪ b) |
9 | 7, 8 | com2an 484 |
. . . 4
a⊥ C
(a ∩ (a⊥ ∪ b)) |
10 | 5, 9 | fh1r 473 |
. . 3
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∩ a⊥ ) = ((((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∩ a⊥ ) ∪ ((a ∩ (a⊥ ∪ b)) ∩ a⊥ )) |
11 | | lea 160 |
. . . . . . 7
(a⊥ ∩ b) ≤ a⊥ |
12 | | lea 160 |
. . . . . . 7
(a⊥ ∩ b⊥ ) ≤ a⊥ |
13 | 11, 12 | lel2or 170 |
. . . . . 6
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ a⊥ |
14 | 13 | df2le2 136 |
. . . . 5
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ a⊥ ) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
15 | | an32 83 |
. . . . . 6
((a ∩ (a⊥ ∪ b)) ∩ a⊥ ) = ((a ∩ a⊥ ) ∩ (a⊥ ∪ b)) |
16 | | ancom 74 |
. . . . . . 7
((a ∩ a⊥ ) ∩ (a⊥ ∪ b)) = ((a⊥ ∪ b) ∩ (a
∩ a⊥
)) |
17 | | dff 101 |
. . . . . . . . . 10
0 = (a ∩ a⊥ ) |
18 | 17 | ax-r1 35 |
. . . . . . . . 9
(a ∩ a⊥ ) = 0 |
19 | 18 | lan 77 |
. . . . . . . 8
((a⊥ ∪ b) ∩ (a
∩ a⊥ )) = ((a⊥ ∪ b) ∩ 0) |
20 | | an0 108 |
. . . . . . . 8
((a⊥ ∪ b) ∩ 0) = 0 |
21 | 19, 20 | ax-r2 36 |
. . . . . . 7
((a⊥ ∪ b) ∩ (a
∩ a⊥ )) =
0 |
22 | 16, 21 | ax-r2 36 |
. . . . . 6
((a ∩ a⊥ ) ∩ (a⊥ ∪ b)) = 0 |
23 | 15, 22 | ax-r2 36 |
. . . . 5
((a ∩ (a⊥ ∪ b)) ∩ a⊥ ) = 0 |
24 | 14, 23 | 2or 72 |
. . . 4
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ a⊥ ) ∪ ((a ∩ (a⊥ ∪ b)) ∩ a⊥ )) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ 0) |
25 | | or0 102 |
. . . 4
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ 0) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
26 | 24, 25 | ax-r2 36 |
. . 3
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∩ a⊥ ) ∪ ((a ∩ (a⊥ ∪ b)) ∩ a⊥ )) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
27 | 10, 26 | ax-r2 36 |
. 2
((((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) ∩ a⊥ ) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
28 | 2, 27 | ax-r2 36 |
1
((a →3 b) ∩ a⊥ ) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |