QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  u3lem14aa GIF version

Theorem u3lem14aa 792
Description: Used to prove 1 "add antecedent" rule in 3 system. (Contributed by NM, 19-Jan-1998.)
Assertion
Ref Expression
u3lem14aa (a3 (a3 ((b3 a ) →3 b ))) = 1

Proof of Theorem u3lem14aa
StepHypRef Expression
1 u3lem14a 791 . . 3 (a3 ((b3 a ) →3 b )) = (a3 (b3 a))
21ud3lem0a 260 . 2 (a3 (a3 ((b3 a ) →3 b ))) = (a3 (a3 (b3 a)))
3 i3th1 543 . 2 (a3 (a3 (b3 a))) = 1
42, 3ax-r2 36 1 (a3 (a3 ((b3 a ) →3 b ))) = 1
Colors of variables: term
Syntax hints:   = wb 1   wn 4  1wt 8  3 wi3 14
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i3 46  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by:  u3lem14aa2  793
  Copyright terms: Public domain W3C validator