| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u3lem14aa2 | GIF version | ||
| Description: Used to prove →1 "add antecedent" rule in →3 system. (Contributed by NM, 19-Jan-1998.) |
| Ref | Expression |
|---|---|
| u3lem14aa2 | (a →3 (a →3 (b →3 (b →3 a⊥ )⊥ ))) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | u3lem13a 789 | . . . . 5 (b →3 (b →3 a⊥ )⊥ ) = (b →1 a) | |
| 2 | u3lem13b 790 | . . . . . 6 ((b →3 a⊥ ) →3 b⊥ ) = (b →1 a) | |
| 3 | 2 | ax-r1 35 | . . . . 5 (b →1 a) = ((b →3 a⊥ ) →3 b⊥ ) |
| 4 | 1, 3 | ax-r2 36 | . . . 4 (b →3 (b →3 a⊥ )⊥ ) = ((b →3 a⊥ ) →3 b⊥ ) |
| 5 | 4 | ud3lem0a 260 | . . 3 (a →3 (b →3 (b →3 a⊥ )⊥ )) = (a →3 ((b →3 a⊥ ) →3 b⊥ )) |
| 6 | 5 | ud3lem0a 260 | . 2 (a →3 (a →3 (b →3 (b →3 a⊥ )⊥ ))) = (a →3 (a →3 ((b →3 a⊥ ) →3 b⊥ ))) |
| 7 | u3lem14aa 792 | . 2 (a →3 (a →3 ((b →3 a⊥ ) →3 b⊥ ))) = 1 | |
| 8 | 6, 7 | ax-r2 36 | 1 (a →3 (a →3 (b →3 (b →3 a⊥ )⊥ ))) = 1 |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 1wt 8 →1 wi1 12 →3 wi3 14 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |