Proof of Theorem i3th1
Step | Hyp | Ref
| Expression |
1 | | df2i3 498 |
. . 3
(b →3 a) = ((b⊥ ∩ a⊥ ) ∪ ((b⊥ ∪ a) ∩ (b
∪ (b⊥ ∩ a)))) |
2 | 1 | lor 70 |
. 2
(a⊥ ∪ (b →3 a)) = (a⊥ ∪ ((b⊥ ∩ a⊥ ) ∪ ((b⊥ ∪ a) ∩ (b
∪ (b⊥ ∩ a))))) |
3 | | lem4 511 |
. 2
(a →3 (a →3 (b →3 a))) = (a⊥ ∪ (b →3 a)) |
4 | | ax-a3 32 |
. . . . 5
((a⊥ ∪ b) ∪ (a
∩ b⊥ )) = (a⊥ ∪ (b ∪ (a ∩
b⊥ ))) |
5 | | anor1 88 |
. . . . . 6
(a ∩ b⊥ ) = (a⊥ ∪ b)⊥ |
6 | 5 | lor 70 |
. . . . 5
((a⊥ ∪ b) ∪ (a
∩ b⊥ )) = ((a⊥ ∪ b) ∪ (a⊥ ∪ b)⊥ ) |
7 | | ax-a3 32 |
. . . . . . . 8
((a⊥ ∪
(a⊥ ∩ b)) ∪ ((b⊥ ∪ a) ∩ (b
∪ (b⊥ ∩ a)))) = (a⊥ ∪ ((a⊥ ∩ b) ∪ ((b⊥ ∪ a) ∩ (b
∪ (b⊥ ∩ a))))) |
8 | | ax-a2 31 |
. . . . . . . . . . . . 13
(b⊥ ∪ a) = (a ∪
b⊥ ) |
9 | | anor2 89 |
. . . . . . . . . . . . . . 15
(a⊥ ∩ b) = (a ∪
b⊥
)⊥ |
10 | 9 | con2 67 |
. . . . . . . . . . . . . 14
(a⊥ ∩ b)⊥ = (a ∪ b⊥ ) |
11 | 10 | ax-r1 35 |
. . . . . . . . . . . . 13
(a ∪ b⊥ ) = (a⊥ ∩ b)⊥ |
12 | 8, 11 | ax-r2 36 |
. . . . . . . . . . . 12
(b⊥ ∪ a) = (a⊥ ∩ b)⊥ |
13 | | ancom 74 |
. . . . . . . . . . . . 13
(b⊥ ∩ a) = (a ∩
b⊥ ) |
14 | 13 | lor 70 |
. . . . . . . . . . . 12
(b ∪ (b⊥ ∩ a)) = (b ∪
(a ∩ b⊥ )) |
15 | 12, 14 | 2an 79 |
. . . . . . . . . . 11
((b⊥ ∪ a) ∩ (b
∪ (b⊥ ∩ a))) = ((a⊥ ∩ b)⊥ ∩ (b ∪ (a ∩
b⊥ ))) |
16 | 15 | lor 70 |
. . . . . . . . . 10
((a⊥ ∩ b) ∪ ((b⊥ ∪ a) ∩ (b
∪ (b⊥ ∩ a)))) = ((a⊥ ∩ b) ∪ ((a⊥ ∩ b)⊥ ∩ (b ∪ (a ∩
b⊥ )))) |
17 | | oml5 449 |
. . . . . . . . . 10
((a⊥ ∩ b) ∪ ((a⊥ ∩ b)⊥ ∩ (b ∪ (a ∩
b⊥ )))) = (b ∪ (a ∩
b⊥ )) |
18 | 16, 17 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∩ b) ∪ ((b⊥ ∪ a) ∩ (b
∪ (b⊥ ∩ a)))) = (b ∪
(a ∩ b⊥ )) |
19 | 18 | lor 70 |
. . . . . . . 8
(a⊥ ∪
((a⊥ ∩ b) ∪ ((b⊥ ∪ a) ∩ (b
∪ (b⊥ ∩ a))))) = (a⊥ ∪ (b ∪ (a ∩
b⊥ ))) |
20 | 7, 19 | ax-r2 36 |
. . . . . . 7
((a⊥ ∪
(a⊥ ∩ b)) ∪ ((b⊥ ∪ a) ∩ (b
∪ (b⊥ ∩ a)))) = (a⊥ ∪ (b ∪ (a ∩
b⊥ ))) |
21 | 20 | ax-r1 35 |
. . . . . 6
(a⊥ ∪ (b ∪ (a ∩
b⊥ ))) = ((a⊥ ∪ (a⊥ ∩ b)) ∪ ((b⊥ ∪ a) ∩ (b
∪ (b⊥ ∩ a)))) |
22 | | orabs 120 |
. . . . . . 7
(a⊥ ∪ (a⊥ ∩ b)) = a⊥ |
23 | 22 | ax-r5 38 |
. . . . . 6
((a⊥ ∪
(a⊥ ∩ b)) ∪ ((b⊥ ∪ a) ∩ (b
∪ (b⊥ ∩ a)))) = (a⊥ ∪ ((b⊥ ∪ a) ∩ (b
∪ (b⊥ ∩ a)))) |
24 | 21, 23 | ax-r2 36 |
. . . . 5
(a⊥ ∪ (b ∪ (a ∩
b⊥ ))) = (a⊥ ∪ ((b⊥ ∪ a) ∩ (b
∪ (b⊥ ∩ a)))) |
25 | 4, 6, 24 | 3tr2 64 |
. . . 4
((a⊥ ∪ b) ∪ (a⊥ ∪ b)⊥ ) = (a⊥ ∪ ((b⊥ ∪ a) ∩ (b
∪ (b⊥ ∩ a)))) |
26 | | df-t 41 |
. . . 4
1 = ((a⊥ ∪
b) ∪ (a⊥ ∪ b)⊥ ) |
27 | | ancom 74 |
. . . . . . 7
(b⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) |
28 | 27 | lor 70 |
. . . . . 6
(a⊥ ∪ (b⊥ ∩ a⊥ )) = (a⊥ ∪ (a⊥ ∩ b⊥ )) |
29 | | orabs 120 |
. . . . . 6
(a⊥ ∪ (a⊥ ∩ b⊥ )) = a⊥ |
30 | 28, 29 | ax-r2 36 |
. . . . 5
(a⊥ ∪ (b⊥ ∩ a⊥ )) = a⊥ |
31 | 30 | ax-r5 38 |
. . . 4
((a⊥ ∪
(b⊥ ∩ a⊥ )) ∪ ((b⊥ ∪ a) ∩ (b
∪ (b⊥ ∩ a)))) = (a⊥ ∪ ((b⊥ ∪ a) ∩ (b
∪ (b⊥ ∩ a)))) |
32 | 25, 26, 31 | 3tr1 63 |
. . 3
1 = ((a⊥ ∪
(b⊥ ∩ a⊥ )) ∪ ((b⊥ ∪ a) ∩ (b
∪ (b⊥ ∩ a)))) |
33 | | ax-a3 32 |
. . 3
((a⊥ ∪
(b⊥ ∩ a⊥ )) ∪ ((b⊥ ∪ a) ∩ (b
∪ (b⊥ ∩ a)))) = (a⊥ ∪ ((b⊥ ∩ a⊥ ) ∪ ((b⊥ ∪ a) ∩ (b
∪ (b⊥ ∩ a))))) |
34 | 32, 33 | ax-r2 36 |
. 2
1 = (a⊥ ∪
((b⊥ ∩ a⊥ ) ∪ ((b⊥ ∪ a) ∩ (b
∪ (b⊥ ∩ a))))) |
35 | 2, 3, 34 | 3tr1 63 |
1
(a →3 (a →3 (b →3 a))) = 1 |