Proof of Theorem u3lem3
| Step | Hyp | Ref
| Expression |
| 1 | | df-i3 46 |
. 2
(a →3 (b →3 a)) = (((a⊥ ∩ (b →3 a)) ∪ (a⊥ ∩ (b →3 a)⊥ )) ∪ (a ∩ (a⊥ ∪ (b →3 a)))) |
| 2 | | ancom 74 |
. . . . . . 7
(a⊥ ∩ (b →3 a)) = ((b
→3 a) ∩ a⊥ ) |
| 3 | | u3lemanb 617 |
. . . . . . 7
((b →3 a) ∩ a⊥ ) = (b⊥ ∩ a⊥ ) |
| 4 | 2, 3 | ax-r2 36 |
. . . . . 6
(a⊥ ∩ (b →3 a)) = (b⊥ ∩ a⊥ ) |
| 5 | | ancom 74 |
. . . . . . 7
(a⊥ ∩ (b →3 a)⊥ ) = ((b →3 a)⊥ ∩ a⊥ ) |
| 6 | | u3lemnanb 657 |
. . . . . . 7
((b →3 a)⊥ ∩ a⊥ ) = (b ∩ a⊥ ) |
| 7 | 5, 6 | ax-r2 36 |
. . . . . 6
(a⊥ ∩ (b →3 a)⊥ ) = (b ∩ a⊥ ) |
| 8 | 4, 7 | 2or 72 |
. . . . 5
((a⊥ ∩
(b →3 a)) ∪ (a⊥ ∩ (b →3 a)⊥ )) = ((b⊥ ∩ a⊥ ) ∪ (b ∩ a⊥ )) |
| 9 | | ancom 74 |
. . . . . . 7
(b⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) |
| 10 | | ancom 74 |
. . . . . . 7
(b ∩ a⊥ ) = (a⊥ ∩ b) |
| 11 | 9, 10 | 2or 72 |
. . . . . 6
((b⊥ ∩ a⊥ ) ∪ (b ∩ a⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) |
| 12 | | ax-a2 31 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b)) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 13 | 11, 12 | ax-r2 36 |
. . . . 5
((b⊥ ∩ a⊥ ) ∪ (b ∩ a⊥ )) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 14 | 8, 13 | ax-r2 36 |
. . . 4
((a⊥ ∩
(b →3 a)) ∪ (a⊥ ∩ (b →3 a)⊥ )) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 15 | | ax-a2 31 |
. . . . . . 7
(a⊥ ∪ (b →3 a)) = ((b
→3 a) ∪ a⊥ ) |
| 16 | | u3lemonb 637 |
. . . . . . 7
((b →3 a) ∪ a⊥ ) = 1 |
| 17 | 15, 16 | ax-r2 36 |
. . . . . 6
(a⊥ ∪ (b →3 a)) = 1 |
| 18 | 17 | lan 77 |
. . . . 5
(a ∩ (a⊥ ∪ (b →3 a))) = (a ∩
1) |
| 19 | | an1 106 |
. . . . 5
(a ∩ 1) = a |
| 20 | 18, 19 | ax-r2 36 |
. . . 4
(a ∩ (a⊥ ∪ (b →3 a))) = a |
| 21 | 14, 20 | 2or 72 |
. . 3
(((a⊥ ∩
(b →3 a)) ∪ (a⊥ ∩ (b →3 a)⊥ )) ∪ (a ∩ (a⊥ ∪ (b →3 a)))) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ a) |
| 22 | | ax-a2 31 |
. . 3
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ a) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
| 23 | 21, 22 | ax-r2 36 |
. 2
(((a⊥ ∩
(b →3 a)) ∪ (a⊥ ∩ (b →3 a)⊥ )) ∪ (a ∩ (a⊥ ∪ (b →3 a)))) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
| 24 | 1, 23 | ax-r2 36 |
1
(a →3 (b →3 a)) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |