| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u3lemnona | GIF version | ||
| Description: Lemma for Kalmbach implication study. (Contributed by NM, 16-Dec-1997.) |
| Ref | Expression |
|---|---|
| u3lemnona | ((a →3 b)⊥ ∪ a⊥ ) = (a⊥ ∪ (a ∩ b⊥ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | u3lemaa 602 | . . . 4 ((a →3 b) ∩ a) = (a ∩ (a⊥ ∪ b)) | |
| 2 | oran2 92 | . . . . 5 (a⊥ ∪ b) = (a ∩ b⊥ )⊥ | |
| 3 | 2 | lan 77 | . . . 4 (a ∩ (a⊥ ∪ b)) = (a ∩ (a ∩ b⊥ )⊥ ) |
| 4 | 1, 3 | ax-r2 36 | . . 3 ((a →3 b) ∩ a) = (a ∩ (a ∩ b⊥ )⊥ ) |
| 5 | df-a 40 | . . 3 ((a →3 b) ∩ a) = ((a →3 b)⊥ ∪ a⊥ )⊥ | |
| 6 | anor1 88 | . . 3 (a ∩ (a ∩ b⊥ )⊥ ) = (a⊥ ∪ (a ∩ b⊥ ))⊥ | |
| 7 | 4, 5, 6 | 3tr2 64 | . 2 ((a →3 b)⊥ ∪ a⊥ )⊥ = (a⊥ ∪ (a ∩ b⊥ ))⊥ |
| 8 | 7 | con1 66 | 1 ((a →3 b)⊥ ∪ a⊥ ) = (a⊥ ∪ (a ∩ b⊥ )) |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →3 wi3 14 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: u3lem13b 790 |
| Copyright terms: Public domain | W3C validator |